Hauptseite > Publikationsdatenbank > Large language models surpass human experts in predicting neuroscience results > print |
001 | 1041321 | ||
005 | 20250512115732.0 | ||
024 | 7 | _ | |a 10.1038/s41562-024-02046-9 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-02220 |2 datacite_doi |
024 | 7 | _ | |a 39604572 |2 pmid |
024 | 7 | _ | |a WOS:001365146700001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02220 |
082 | _ | _ | |a 150 |
100 | 1 | _ | |a Luo, Xiaoliang |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Large language models surpass human experts in predicting neuroscience results |
260 | _ | _ | |a London |c 2025 |b Nature Research |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1744792024_17200 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a cientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. Here, to evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs indicated high confidence in their predictions, their responses were more likely to be correct, which presages a future where LLMs assist humans in making discoveries. Our approach is not neuroscience specific and is transferable to other knowledge-intensive endeavours. |
536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Rechardt, Akilles |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sun, Guangzhi |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nejad, Kevin K. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Yáñez, Felipe |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Yilmaz, Bati |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Lee, Kangjoo |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Cohen, Alexandra O. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Borghesani, Valentina |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Pashkov, Anton |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Marinazzo, Daniele |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Nicholas, Jonathan |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Salatiello, Alessandro |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Sucholutsky, Ilia |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Minervini, Pasquale |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Razavi, Sepehr |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Rocca, Roberta |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Yusifov, Elkhan |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Okalova, Tereza |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Gu, Nianlong |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Ferianc, Martin |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Khona, Mikail |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 22 |
700 | 1 | _ | |a Lee, Pui-Shee |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Mata, Rui |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Myers, Nicholas E. |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Bizley, Jennifer K. |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Musslick, Sebastian |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Bilgin, Isil Poyraz |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Niso, Guiomar |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Ales, Justin M. |0 P:(DE-HGF)0 |b 30 |
700 | 1 | _ | |a Gaebler, Michael |0 P:(DE-HGF)0 |b 31 |
700 | 1 | _ | |a Ratan Murty, N. Apurva |0 P:(DE-HGF)0 |b 32 |
700 | 1 | _ | |a Loued-Khenissi, Leyla |0 P:(DE-HGF)0 |b 33 |
700 | 1 | _ | |a Behler, Anna |0 P:(DE-HGF)0 |b 34 |
700 | 1 | _ | |a Hall, Chloe M. |0 P:(DE-HGF)0 |b 35 |
700 | 1 | _ | |a Dafflon, Jessica |0 P:(DE-HGF)0 |b 36 |
700 | 1 | _ | |a Bao, Sherry Dongqi |0 P:(DE-HGF)0 |b 37 |
700 | 1 | _ | |a Love, Bradley C. |0 P:(DE-HGF)0 |b 38 |
773 | _ | _ | |a 10.1038/s41562-024-02046-9 |g Vol. 9, no. 2, p. 305 - 315 |0 PERI:(DE-600)2885046-4 |n 2 |p 305 - 315 |t Nature human behaviour |v 9 |y 2025 |x 2397-3374 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041321/files/s41562-024-02046-9.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1041321 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Department of Experimental Psychology, University College London |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 22 |6 P:(DE-Juel1)172843 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0130 |2 StatID |b Social Sciences Citation Index |d 2024-12-05 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT HUM BEHAV : 2022 |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1180 |2 StatID |b Current Contents - Social and Behavioral Sciences |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-05 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2024-12-05 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b NAT HUM BEHAV : 2022 |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|