001041408 001__ 1041408 001041408 005__ 20250423202217.0 001041408 0247_ $$2doi$$a10.1093/noajnl/vdaf023 001041408 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02236 001041408 0247_ $$2pmid$$a40084168 001041408 0247_ $$2WOS$$aWOS:001443909500001 001041408 037__ $$aFZJ-2025-02236 001041408 082__ $$a610 001041408 1001_ $$0P:(DE-Juel1)184842$$aFriedrich, Michel$$b0$$eCorresponding author 001041408 245__ $$aFunctional connectivity between tumor region and resting-state networks as imaging biomarker for overall survival in recurrent gliomas diagnosed by O -(2-[18F]fluoroethyl)- l -tyrosine PET 001041408 260__ $$aOxford$$bOxford University Press$$c2025 001041408 3367_ $$2DRIVER$$aarticle 001041408 3367_ $$2DataCite$$aOutput Types/Journal article 001041408 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745305077_7287 001041408 3367_ $$2BibTeX$$aARTICLE 001041408 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001041408 3367_ $$00$$2EndNote$$aJournal Article 001041408 500__ $$aThis open-access publication is funded by the DeutscheForschungsgemeinschaft (DFG, German Research Foundation,contract number 491111487). 001041408 520__ $$aBackgroundAmino acid PET using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (FET) is one of the most reliable imaging methods for detecting glioma recurrence. Here, we hypothesized that functional MR connectivity between the metabolic active recurrent tumor region and resting-state networks of the brain could serve as a prognostic imaging biomarker for overall survival (OS).MethodsThe study included 82 patients (26–81 years; median Eastern Cooperative Oncology Group performance score, 0) with recurrent gliomas following therapy (WHO-CNS 2021 grade 4 glioblastoma, n = 57; grade 3 or 4 astrocytoma, n = 12; grade 2 or 3 oligodendroglioma, n = 13) diagnosed by FET PET simultaneously acquired with functional resting-state MR. Functional connectivity (FC) was assessed between tumor regions and 7 canonical resting-state networks.ResultsWHO tumor grade and IDH mutation status were strong predictors of OS after recurrence (P < .001). Overall FC between tumor regions and networks was highest in oligodendrogliomas and was inversely related to tumor grade (P = .031). FC between the tumor region and the dorsal attention network was associated with longer OS (HR, 0.88; 95%CI, 0.80–0.97; P = .007), and showed an independent association with OS (HR, 0.90; 95%CI, 0.81–0.99; P = .033) in a model including clinical factors, tumor volume and MGMT. In the glioblastoma subgroup, tumor volume and FC between the tumor and the visual network (HR, 0.90; 95%CI, 0.82–0.99, P = .031) were independent predictors of survival.ConclusionsRecurrent gliomas exhibit significant FC to resting-state networks of the brain. Besides tumor type and grade, high FC between the tumor and distinct networks could serve as independent prognostic factors for improved OS in these patients. 001041408 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001041408 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1 001041408 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001041408 7001_ $$00000-0001-7147-4594$$aWerner, Jan-Michael$$b1 001041408 7001_ $$0P:(DE-HGF)0$$aSteinbach, Joachim P$$b2 001041408 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b3 001041408 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b4 001041408 7001_ $$0P:(DE-HGF)0$$aPiroth, Marc$$b5 001041408 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b6 001041408 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian P$$b7 001041408 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b8 001041408 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J$$b9 001041408 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I$$b10 001041408 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M$$b11$$ufzj 001041408 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b12 001041408 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b13 001041408 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b14 001041408 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b15 001041408 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b16 001041408 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdaf023$$gVol. 7, no. 1, p. vdaf023$$n1$$pvdaf023$$tNeuro-oncology advances$$v7$$x2632-2498$$y2025 001041408 8564_ $$uhttps://juser.fz-juelich.de/record/1041408/files/Invoice_SOA25LT001042.pdf 001041408 8564_ $$uhttps://juser.fz-juelich.de/record/1041408/files/PDF.pdf$$yOpenAccess 001041408 909CO $$ooai:juser.fz-juelich.de:1041408$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire$$qopenCost$$qOpenAPC 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184842$$aForschungszentrum Jülich$$b0$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b6$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b7$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b8$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b9$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b11$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b13$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b15$$kFZJ 001041408 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b16$$kFZJ 001041408 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001041408 9141_ $$y2025 001041408 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 001041408 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001041408 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOL ADV : 2022$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:37:56Z 001041408 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:37:56Z 001041408 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001041408 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:37:56Z 001041408 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 001041408 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 001041408 920__ $$lyes 001041408 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 001041408 980__ $$ajournal 001041408 980__ $$aVDB 001041408 980__ $$aI:(DE-Juel1)INM-3-20090406 001041408 980__ $$aUNRESTRICTED 001041408 9801_ $$aFullTexts