001     1041408
005     20250423202217.0
024 7 _ |a 10.1093/noajnl/vdaf023
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02236
|2 datacite_doi
024 7 _ |a 40084168
|2 pmid
024 7 _ |a WOS:001443909500001
|2 WOS
037 _ _ |a FZJ-2025-02236
082 _ _ |a 610
100 1 _ |a Friedrich, Michel
|0 P:(DE-Juel1)184842
|b 0
|e Corresponding author
245 _ _ |a Functional connectivity between tumor region and resting-state networks as imaging biomarker for overall survival in recurrent gliomas diagnosed by O -(2-[18F]fluoroethyl)- l -tyrosine PET
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745305077_7287
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This open-access publication is funded by the DeutscheForschungsgemeinschaft (DFG, German Research Foundation,contract number 491111487).
520 _ _ |a BackgroundAmino acid PET using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (FET) is one of the most reliable imaging methods for detecting glioma recurrence. Here, we hypothesized that functional MR connectivity between the metabolic active recurrent tumor region and resting-state networks of the brain could serve as a prognostic imaging biomarker for overall survival (OS).MethodsThe study included 82 patients (26–81 years; median Eastern Cooperative Oncology Group performance score, 0) with recurrent gliomas following therapy (WHO-CNS 2021 grade 4 glioblastoma, n = 57; grade 3 or 4 astrocytoma, n = 12; grade 2 or 3 oligodendroglioma, n = 13) diagnosed by FET PET simultaneously acquired with functional resting-state MR. Functional connectivity (FC) was assessed between tumor regions and 7 canonical resting-state networks.ResultsWHO tumor grade and IDH mutation status were strong predictors of OS after recurrence (P < .001). Overall FC between tumor regions and networks was highest in oligodendrogliomas and was inversely related to tumor grade (P = .031). FC between the tumor region and the dorsal attention network was associated with longer OS (HR, 0.88; 95%CI, 0.80–0.97; P = .007), and showed an independent association with OS (HR, 0.90; 95%CI, 0.81–0.99; P = .033) in a model including clinical factors, tumor volume and MGMT. In the glioblastoma subgroup, tumor volume and FC between the tumor and the visual network (HR, 0.90; 95%CI, 0.82–0.99, P = .031) were independent predictors of survival.ConclusionsRecurrent gliomas exhibit significant FC to resting-state networks of the brain. Besides tumor type and grade, high FC between the tumor and distinct networks could serve as independent prognostic factors for improved OS in these patients.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Werner, Jan-Michael
|0 0000-0001-7147-4594
|b 1
700 1 _ |a Steinbach, Joachim P
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sabel, Michael
|0 P:(DE-Juel1)165921
|b 3
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Piroth, Marc
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 6
700 1 _ |a Filss, Christian P
|0 P:(DE-Juel1)141877
|b 7
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 8
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 9
700 1 _ |a Ruge, Maximilian I
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mottaghy, Felix M
|0 P:(DE-Juel1)132318
|b 11
|u fzj
700 1 _ |a Goldbrunner, Roland
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 13
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 14
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 15
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 16
773 _ _ |a 10.1093/noajnl/vdaf023
|g Vol. 7, no. 1, p. vdaf023
|0 PERI:(DE-600)3009682-0
|n 1
|p vdaf023
|t Neuro-oncology advances
|v 7
|y 2025
|x 2632-2498
856 4 _ |u https://juser.fz-juelich.de/record/1041408/files/Invoice_SOA25LT001042.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1041408/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041408
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q OpenAPC
|q openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:56Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:56Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21