001 | 1041408 | ||
005 | 20250423202217.0 | ||
024 | 7 | _ | |a 10.1093/noajnl/vdaf023 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-02236 |2 datacite_doi |
024 | 7 | _ | |a 40084168 |2 pmid |
024 | 7 | _ | |a WOS:001443909500001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02236 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Friedrich, Michel |0 P:(DE-Juel1)184842 |b 0 |e Corresponding author |
245 | _ | _ | |a Functional connectivity between tumor region and resting-state networks as imaging biomarker for overall survival in recurrent gliomas diagnosed by O -(2-[18F]fluoroethyl)- l -tyrosine PET |
260 | _ | _ | |a Oxford |c 2025 |b Oxford University Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1745305077_7287 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a This open-access publication is funded by the DeutscheForschungsgemeinschaft (DFG, German Research Foundation,contract number 491111487). |
520 | _ | _ | |a BackgroundAmino acid PET using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (FET) is one of the most reliable imaging methods for detecting glioma recurrence. Here, we hypothesized that functional MR connectivity between the metabolic active recurrent tumor region and resting-state networks of the brain could serve as a prognostic imaging biomarker for overall survival (OS).MethodsThe study included 82 patients (26–81 years; median Eastern Cooperative Oncology Group performance score, 0) with recurrent gliomas following therapy (WHO-CNS 2021 grade 4 glioblastoma, n = 57; grade 3 or 4 astrocytoma, n = 12; grade 2 or 3 oligodendroglioma, n = 13) diagnosed by FET PET simultaneously acquired with functional resting-state MR. Functional connectivity (FC) was assessed between tumor regions and 7 canonical resting-state networks.ResultsWHO tumor grade and IDH mutation status were strong predictors of OS after recurrence (P < .001). Overall FC between tumor regions and networks was highest in oligodendrogliomas and was inversely related to tumor grade (P = .031). FC between the tumor region and the dorsal attention network was associated with longer OS (HR, 0.88; 95%CI, 0.80–0.97; P = .007), and showed an independent association with OS (HR, 0.90; 95%CI, 0.81–0.99; P = .033) in a model including clinical factors, tumor volume and MGMT. In the glioblastoma subgroup, tumor volume and FC between the tumor and the visual network (HR, 0.90; 95%CI, 0.82–0.99, P = .031) were independent predictors of survival.ConclusionsRecurrent gliomas exhibit significant FC to resting-state networks of the brain. Besides tumor type and grade, high FC between the tumor and distinct networks could serve as independent prognostic factors for improved OS in these patients. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Werner, Jan-Michael |0 0000-0001-7147-4594 |b 1 |
700 | 1 | _ | |a Steinbach, Joachim P |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sabel, Michael |0 P:(DE-Juel1)165921 |b 3 |
700 | 1 | _ | |a Herrlinger, Ulrich |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Piroth, Marc |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Stoffels, Gabriele |0 P:(DE-Juel1)131627 |b 6 |
700 | 1 | _ | |a Filss, Christian P |0 P:(DE-Juel1)141877 |b 7 |
700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 8 |
700 | 1 | _ | |a Shah, Nadim J |0 P:(DE-Juel1)131794 |b 9 |
700 | 1 | _ | |a Ruge, Maximilian I |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Mottaghy, Felix M |0 P:(DE-Juel1)132318 |b 11 |u fzj |
700 | 1 | _ | |a Goldbrunner, Roland |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 13 |
700 | 1 | _ | |a Fink, Gereon R |0 P:(DE-Juel1)131720 |b 14 |
700 | 1 | _ | |a Kocher, Martin |0 P:(DE-Juel1)173675 |b 15 |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 16 |
773 | _ | _ | |a 10.1093/noajnl/vdaf023 |g Vol. 7, no. 1, p. vdaf023 |0 PERI:(DE-600)3009682-0 |n 1 |p vdaf023 |t Neuro-oncology advances |v 7 |y 2025 |x 2632-2498 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041408/files/Invoice_SOA25LT001042.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041408/files/PDF.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1041408 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |q OpenAPC |q openCost |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184842 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131627 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)141877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)145110 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)132318 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131720 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)173675 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)143792 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEURO-ONCOL ADV : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:37:56Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:37:56Z |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:37:56Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|