001041427 001__ 1041427
001041427 005__ 20250512115734.0
001041427 0247_ $$2doi$$a10.1103/PhysRevMaterials.9.044003
001041427 0247_ $$2ISSN$$a2475-9953
001041427 0247_ $$2ISSN$$a2476-0455
001041427 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02240
001041427 0247_ $$2WOS$$aWOS:001469031200001
001041427 037__ $$aFZJ-2025-02240
001041427 082__ $$a530
001041427 1001_ $$0P:(DE-Juel1)164856$$aYin, Hao$$b0$$eFirst author
001041427 245__ $$aEpitaxial growth of mono- and (twisted) multilayer graphene on SiC(0001)
001041427 260__ $$aCollege Park, MD$$bAPS$$c2025
001041427 3367_ $$2DRIVER$$aarticle
001041427 3367_ $$2DataCite$$aOutput Types/Journal article
001041427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744271776_6274
001041427 3367_ $$2BibTeX$$aARTICLE
001041427 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041427 3367_ $$00$$2EndNote$$aJournal Article
001041427 520__ $$aTo take full advantage of twisted bilayers of graphene or other two-dimensional materials, it is essential toprecisely control the twist angle between the stacked layers, as this parameter determines the properties of theheterostructure. In this context, a growth routine using borazine as a surfactant molecule on SiC(0001) surfaceshas been reported, leading to the formation of high-quality epitaxial graphene layers that are unconventionallyoriented, i.e., aligned with the substrate lattice (G-R0◦ ) [Bocquet et al. Phys. Rev. Lett. 125, 106102 (2020)].Since the G-R0◦ layer sits on a buffer layer, also known as zeroth-layer graphene (ZLG), which is rotated 30◦ withrespect to the SiC substrate and still covalently bonded to it, decoupling the ZLG-R30◦ from the substrate canlead to high-quality twisted bilayer graphene (tBLG). Here, we report the decoupling of ZLG-R30◦ by increasingthe temperature during annealing in a borazine atmosphere. While this converts ZLG-R30◦ to G-R30◦ and thusproduces tBLG, the growth process at elevated temperature is no longer self-limiting, so that the surface iscovered by a patchwork of graphene multilayers of different thicknesses. We find a 20% coverage of tBLG onZLG, while on the rest of the surface tBLG sits on one or more additional graphene layers. In order to achievecomplete coverage with tBLG only, alternative ways of decoupling the ZLG, e.g., by intercalation with suitableatoms, may be advantageous.
001041427 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041427 536__ $$0G:(GEPRIS)385975694$$aSFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)$$c385975694$$x1
001041427 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041427 7001_ $$0P:(DE-Juel1)180912$$aHutter, Mark$$b1
001041427 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b2
001041427 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b3
001041427 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b4
001041427 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b5$$eCorresponding author
001041427 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.9.044003$$gVol. 9, no. 4, p. 044003$$n4$$p044003$$tPhysical review materials$$v9$$x2475-9953$$y2025
001041427 8564_ $$uhttps://juser.fz-juelich.de/record/1041427/files/PhysRevMaterials.9.044003.pdf$$yOpenAccess
001041427 909CO $$ooai:juser.fz-juelich.de:1041427$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164856$$aForschungszentrum Jülich$$b0$$kFZJ
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180912$$aForschungszentrum Jülich$$b1$$kFZJ
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b2$$kFZJ
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b4$$kFZJ
001041427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b5$$kFZJ
001041427 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041427 9141_ $$y2025
001041427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001041427 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2022$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041427 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
001041427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001041427 920__ $$lyes
001041427 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041427 980__ $$ajournal
001041427 980__ $$aVDB
001041427 980__ $$aUNRESTRICTED
001041427 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041427 9801_ $$aFullTexts