001     1041427
005     20250512115734.0
024 7 _ |a 10.1103/PhysRevMaterials.9.044003
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02240
|2 datacite_doi
024 7 _ |a WOS:001469031200001
|2 WOS
037 _ _ |a FZJ-2025-02240
082 _ _ |a 530
100 1 _ |a Yin, Hao
|0 P:(DE-Juel1)164856
|b 0
|e First author
245 _ _ |a Epitaxial growth of mono- and (twisted) multilayer graphene on SiC(0001)
260 _ _ |a College Park, MD
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744271776_6274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To take full advantage of twisted bilayers of graphene or other two-dimensional materials, it is essential toprecisely control the twist angle between the stacked layers, as this parameter determines the properties of theheterostructure. In this context, a growth routine using borazine as a surfactant molecule on SiC(0001) surfaceshas been reported, leading to the formation of high-quality epitaxial graphene layers that are unconventionallyoriented, i.e., aligned with the substrate lattice (G-R0◦ ) [Bocquet et al. Phys. Rev. Lett. 125, 106102 (2020)].Since the G-R0◦ layer sits on a buffer layer, also known as zeroth-layer graphene (ZLG), which is rotated 30◦ withrespect to the SiC substrate and still covalently bonded to it, decoupling the ZLG-R30◦ from the substrate canlead to high-quality twisted bilayer graphene (tBLG). Here, we report the decoupling of ZLG-R30◦ by increasingthe temperature during annealing in a borazine atmosphere. While this converts ZLG-R30◦ to G-R30◦ and thusproduces tBLG, the growth process at elevated temperature is no longer self-limiting, so that the surface iscovered by a patchwork of graphene multilayers of different thicknesses. We find a 20% coverage of tBLG onZLG, while on the rest of the surface tBLG sits on one or more additional graphene layers. In order to achievecomplete coverage with tBLG only, alternative ways of decoupling the ZLG, e.g., by intercalation with suitableatoms, may be advantageous.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|0 G:(GEPRIS)385975694
|c 385975694
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hutter, Mark
|0 P:(DE-Juel1)180912
|b 1
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 2
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 3
700 1 _ |a Bocquet, François C.
|0 P:(DE-Juel1)167128
|b 4
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 5
|e Corresponding author
773 _ _ |a 10.1103/PhysRevMaterials.9.044003
|g Vol. 9, no. 4, p. 044003
|0 PERI:(DE-600)2898355-5
|n 4
|p 044003
|t Physical review materials
|v 9
|y 2025
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/1041427/files/PhysRevMaterials.9.044003.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041427
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180912
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2022
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21