001041429 001__ 1041429
001041429 005__ 20250410202221.0
001041429 0247_ $$2doi$$a10.48550/ARXIV.2502.17995
001041429 037__ $$aFZJ-2025-02242
001041429 1001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b0$$eCorresponding author
001041429 245__ $$aDistributed Current Injection into a 1D Ballistic Edge Channel
001041429 260__ $$barXiv$$c2025
001041429 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1744270113_5615
001041429 3367_ $$2ORCID$$aWORKING_PAPER
001041429 3367_ $$028$$2EndNote$$aElectronic Article
001041429 3367_ $$2DRIVER$$apreprint
001041429 3367_ $$2BibTeX$$aARTICLE
001041429 3367_ $$2DataCite$$aOutput Types/Working Paper
001041429 520__ $$aQuantized charge transport through a 1D ballistic channel was famously explained decades ago by Rolf Landauer, by considering local injection of charge carriers from two contacts at the ends of the 1D channel. With the rise of quantum (spin/anomalous) Hall insulators, i.e., 2D material systems with ballistic 1D edge states along their perimeter, a different geometry has become relevant: The distributed injection of charge carriers from a 2D half-plane with residual conductivity into the 1D edge channel. Here, we generalize Landauer's treatment of ballistic transport to such a setup and identify hallmark signatures that distinguish a ballistic channel from a resistive one.
001041429 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041429 536__ $$0G:(EU-Grant)101120240$$aML4Q - Machine Learning for Quantum (101120240)$$c101120240$$fHORIZON-MSCA-2022-DN-01$$x1
001041429 536__ $$0G:(EU-Grant)731473$$aQuantERA - QuantERA ERA-NET Cofund in Quantum Technologies (731473)$$c731473$$fFETPROACT-2016$$x2
001041429 536__ $$0G:(GEPRIS)443416235$$aDFG project G:(GEPRIS)443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie (443416235)$$c443416235$$x3
001041429 588__ $$aDataset connected to DataCite
001041429 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041429 650_7 $$2Other$$aFOS: Physical sciences
001041429 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b1$$ufzj
001041429 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b2$$ufzj
001041429 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b3$$ufzj
001041429 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b4$$ufzj
001041429 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b5$$eLast author$$ufzj
001041429 773__ $$a10.48550/ARXIV.2502.17995
001041429 8564_ $$uhttps://arxiv.org/abs/2502.17995
001041429 909CO $$ooai:juser.fz-juelich.de:1041429$$popenaire$$pVDB$$pec_fundedresources
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b0$$kFZJ
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b1$$kFZJ
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b2$$kFZJ
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b3$$kFZJ
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
001041429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b5$$kFZJ
001041429 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041429 9141_ $$y2025
001041429 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041429 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
001041429 980__ $$apreprint
001041429 980__ $$aVDB
001041429 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041429 980__ $$aI:(DE-Juel1)PGI-9-20110106
001041429 980__ $$aUNRESTRICTED