001     1041429
005     20250410202221.0
024 7 _ |a 10.48550/ARXIV.2502.17995
|2 doi
037 _ _ |a FZJ-2025-02242
100 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 0
|e Corresponding author
245 _ _ |a Distributed Current Injection into a 1D Ballistic Edge Channel
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1744270113_5615
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Quantized charge transport through a 1D ballistic channel was famously explained decades ago by Rolf Landauer, by considering local injection of charge carriers from two contacts at the ends of the 1D channel. With the rise of quantum (spin/anomalous) Hall insulators, i.e., 2D material systems with ballistic 1D edge states along their perimeter, a different geometry has become relevant: The distributed injection of charge carriers from a 2D half-plane with residual conductivity into the 1D edge channel. Here, we generalize Landauer's treatment of ballistic transport to such a setup and identify hallmark signatures that distinguish a ballistic channel from a resistive one.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a ML4Q - Machine Learning for Quantum (101120240)
|0 G:(EU-Grant)101120240
|c 101120240
|f HORIZON-MSCA-2022-DN-01
|x 1
536 _ _ |a QuantERA - QuantERA ERA-NET Cofund in Quantum Technologies (731473)
|0 G:(EU-Grant)731473
|c 731473
|f FETPROACT-2016
|x 2
536 _ _ |a DFG project G:(GEPRIS)443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie (443416235)
|0 G:(GEPRIS)443416235
|c 443416235
|x 3
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 1
|u fzj
700 1 _ |a Soltner, Helmut
|0 P:(DE-Juel1)133754
|b 2
|u fzj
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 3
|u fzj
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 4
|u fzj
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 5
|e Last author
|u fzj
773 _ _ |a 10.48550/ARXIV.2502.17995
856 4 _ |u https://arxiv.org/abs/2502.17995
909 C O |o oai:juser.fz-juelich.de:1041429
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180184
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21