001041442 001__ 1041442
001041442 005__ 20251129202117.0
001041442 0247_ $$2doi$$a10.48550/ARXIV.2406.04891
001041442 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02246
001041442 037__ $$aFZJ-2025-02246
001041442 1001_ $$0P:(DE-Juel1)178064$$aJerger, M.$$b0
001041442 245__ $$aDispersive Qubit Readout with Intrinsic Resonator Reset
001041442 260__ $$barXiv$$c2024
001041442 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764418308_20592
001041442 3367_ $$2ORCID$$aWORKING_PAPER
001041442 3367_ $$028$$2EndNote$$aElectronic Article
001041442 3367_ $$2DRIVER$$apreprint
001041442 3367_ $$2BibTeX$$aARTICLE
001041442 3367_ $$2DataCite$$aOutput Types/Working Paper
001041442 520__ $$aA key challenge in quantum computing is speeding up measurement and initialization. Here, we experimentally demonstrate a dispersive measurement method for superconducting qubits that simultaneously measures the qubit and returns the readout resonator to its initial state. The approach is based on universal analytical pulses and requires knowledge of the qubit and resonator parameters, but needs no direct optimization of the pulse shape, even when accounting for the nonlinearity of the system. Moreover, the method generalizes to measuring an arbitrary number of modes and states. For the qubit readout, we can drive the resonator to $\sim 10^2$ photons and back to $\sim 10^{-3}$ photons in less than $3 κ^{-1}$, while still achieving a $T_1$-limited assignment error below 1\%. We also present universal pulse shapes and experimental results for qutrit readout.
001041442 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001041442 536__ $$0G:(EU-Grant)101113946$$aOpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)$$c101113946$$fHORIZON-CL4-2022-QUANTUM-01-SGA$$x1
001041442 536__ $$0G:(EU-Grant)101080085$$aQCFD - Quantum Computational Fluid Dynamics (101080085)$$c101080085$$fHORIZON-CL4-2021-DIGITAL-EMERGING-02$$x2
001041442 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x3
001041442 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x4
001041442 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x5
001041442 588__ $$aDataset connected to DataCite
001041442 650_7 $$2Other$$aQuantum Physics (quant-ph)
001041442 650_7 $$2Other$$aSuperconductivity (cond-mat.supr-con)
001041442 650_7 $$2Other$$aApplied Physics (physics.app-ph)
001041442 650_7 $$2Other$$aFOS: Physical sciences
001041442 7001_ $$0P:(DE-Juel1)179158$$aMotzoi, F.$$b1
001041442 7001_ $$0P:(DE-Juel1)186769$$aGao, Yuan$$b2$$ufzj
001041442 7001_ $$0P:(DE-HGF)0$$aDickel, C.$$b3
001041442 7001_ $$0P:(DE-HGF)0$$aBuchmann, L.$$b4
001041442 7001_ $$0P:(DE-HGF)0$$aBengtsson, A.$$b5
001041442 7001_ $$0P:(DE-HGF)0$$aTancredi, G.$$b6
001041442 7001_ $$0P:(DE-HGF)0$$aWarren, C. W.$$b7
001041442 7001_ $$0P:(DE-HGF)0$$aBylander, J.$$b8
001041442 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, D.$$b9
001041442 7001_ $$0P:(DE-Juel1)190190$$aBarends, R.$$b10
001041442 7001_ $$0P:(DE-Juel1)180350$$aBushev, P. A.$$b11
001041442 773__ $$a10.48550/ARXIV.2406.04891
001041442 8564_ $$uhttps://juser.fz-juelich.de/record/1041442/files/2406.04891v2_preprint-Dispersive%20Qubit%20Readout%20with%20Intrinsic%20Resonator%20Reset-10June2024.pdf$$yOpenAccess
001041442 909CO $$ooai:juser.fz-juelich.de:1041442$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178064$$aForschungszentrum Jülich$$b0$$kFZJ
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179158$$aForschungszentrum Jülich$$b1$$kFZJ
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186769$$aForschungszentrum Jülich$$b2$$kFZJ
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b9$$kFZJ
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b10$$kFZJ
001041442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180350$$aForschungszentrum Jülich$$b11$$kFZJ
001041442 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001041442 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041442 920__ $$lyes
001041442 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
001041442 9201_ $$0I:(DE-Juel1)PGI-13-20210701$$kPGI-13$$lQuantum Computing$$x1
001041442 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x2
001041442 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x3
001041442 980__ $$apreprint
001041442 980__ $$aVDB
001041442 980__ $$aUNRESTRICTED
001041442 980__ $$aI:(DE-Juel1)PGI-8-20190808
001041442 980__ $$aI:(DE-Juel1)PGI-13-20210701
001041442 980__ $$aI:(DE-Juel1)PGI-11-20170113
001041442 980__ $$aI:(DE-Juel1)PGI-2-20110106
001041442 9801_ $$aFullTexts