001     1041442
005     20251129202117.0
024 7 _ |a 10.48550/ARXIV.2406.04891
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02246
|2 datacite_doi
037 _ _ |a FZJ-2025-02246
100 1 _ |a Jerger, M.
|0 P:(DE-Juel1)178064
|b 0
245 _ _ |a Dispersive Qubit Readout with Intrinsic Resonator Reset
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1764418308_20592
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a A key challenge in quantum computing is speeding up measurement and initialization. Here, we experimentally demonstrate a dispersive measurement method for superconducting qubits that simultaneously measures the qubit and returns the readout resonator to its initial state. The approach is based on universal analytical pulses and requires knowledge of the qubit and resonator parameters, but needs no direct optimization of the pulse shape, even when accounting for the nonlinearity of the system. Moreover, the method generalizes to measuring an arbitrary number of modes and states. For the qubit readout, we can drive the resonator to $\sim 10^2$ photons and back to $\sim 10^{-3}$ photons in less than $3 κ^{-1}$, while still achieving a $T_1$-limited assignment error below 1\%. We also present universal pulse shapes and experimental results for qutrit readout.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a OpenSuperQPlus100 - Open Superconducting Quantum Computers (OpenSuperQPlus) (101113946)
|0 G:(EU-Grant)101113946
|c 101113946
|f HORIZON-CL4-2022-QUANTUM-01-SGA
|x 1
536 _ _ |a QCFD - Quantum Computational Fluid Dynamics (101080085)
|0 G:(EU-Grant)101080085
|c 101080085
|f HORIZON-CL4-2021-DIGITAL-EMERGING-02
|x 2
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 3
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 4
536 _ _ |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 5
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a Superconductivity (cond-mat.supr-con)
|2 Other
650 _ 7 |a Applied Physics (physics.app-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Motzoi, F.
|0 P:(DE-Juel1)179158
|b 1
700 1 _ |a Gao, Yuan
|0 P:(DE-Juel1)186769
|b 2
|u fzj
700 1 _ |a Dickel, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Buchmann, L.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bengtsson, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tancredi, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Warren, C. W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bylander, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a DiVincenzo, D.
|0 P:(DE-Juel1)143759
|b 9
700 1 _ |a Barends, R.
|0 P:(DE-Juel1)190190
|b 10
700 1 _ |a Bushev, P. A.
|0 P:(DE-Juel1)180350
|b 11
773 _ _ |a 10.48550/ARXIV.2406.04891
856 4 _ |u https://juser.fz-juelich.de/record/1041442/files/2406.04891v2_preprint-Dispersive%20Qubit%20Readout%20with%20Intrinsic%20Resonator%20Reset-10June2024.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041442
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186769
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)143759
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)190190
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)180350
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-13-20210701
|k PGI-13
|l Quantum Computing
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 3
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 _ _ |a I:(DE-Juel1)PGI-13-20210701
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21