001041486 001__ 1041486
001041486 005__ 20250804202236.0
001041486 0247_ $$2doi$$a10.1016/j.rse.2025.114739
001041486 0247_ $$2ISSN$$a0034-4257
001041486 0247_ $$2ISSN$$a1879-0704
001041486 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02272
001041486 0247_ $$2WOS$$aWOS:001471626900001
001041486 037__ $$aFZJ-2025-02272
001041486 082__ $$a550
001041486 1001_ $$0P:(DE-HGF)0$$aKrämer, Julie$$b0$$eCorresponding author
001041486 245__ $$aDownscaling the full-spectrum solar-induced fluorescence emission signal of a mixed crop canopy to the photosystem level using the hybrid approach
001041486 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001041486 3367_ $$2DRIVER$$aarticle
001041486 3367_ $$2DataCite$$aOutput Types/Journal article
001041486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746516696_19037
001041486 3367_ $$2BibTeX$$aARTICLE
001041486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041486 3367_ $$00$$2EndNote$$aJournal Article
001041486 520__ $$aRemote sensing of hyperspectral vegetation reflectance and solar-induced chlorophyll fluorescence (SIF) isessential for evaluating crop functionality and photosynthetic performance. While primarily applied in monocultures,these tools show promise in diverse cropping systems, enhancing ecological intensification. Plant-plantinteractions in such systems can influence key physiological processes, such as photosynthesis, making SIF avaluable tool for evaluating how crop diversity affects photosynthetic function and productivity. However,detecting SIF in diverse stands remains challenging due to uncertainties in light re-absorption and scattering. Toaddress these challenges, we propose a hybrid model inversion framework that combines canopy observationswith physical modeling to derive leaf biochemical, canopy structural variables, and SIF spectra at leaf andphotosystem levels. This approach employs a machine learning retrieval algorithm (MLRA), trained on syntheticspectra from radiative transfer model (RTM) simulations, to quantify re-absorption and scattering effects. Usingthe SpecFit retrieval algorithm, the temporal evolution of full-spectrum SIF at the canopy level can be derived. Todownscale SIF to the photosystem level and retrieve its quantum yield, we corrected the canopy SIF spectrum forre-absorption and scattering effects calculated from TOC reflectance. Spectral measurements were gathered fromfield experiments conducted over three years, covering various growth stages of cereal and legume monocropsand their mixture. Our method accurately predicts important leaf biochemical and canopy structural variables,such as leaf area (LAI, R2 = 0.75) and leaf chlorophyll content (LCC, R2 = 0.91), and shows a general highretrieval performance for light absorption (fAPARChl, R2 = 0.99 for the internal model validation). We confirmedthe reliability of our method in modeling re-absorption and scattering processes by comparing canopy SIFdownscaled to the leaf level with independent leaf-level SIF measurements. While the results show a goodprediction accuracy in terms of fluorescence magnitude at the leaf level, we did not find a strong agreement ofcorresponding leaf and canopy measurements at the single plot level.
001041486 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001041486 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041486 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001041486 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b1
001041486 7001_ $$0P:(DE-Juel1)190393$$aCastro, Antony Oswaldo$$b2
001041486 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b3
001041486 7001_ $$0P:(DE-HGF)0$$aPude, Ralf$$b4
001041486 7001_ $$0P:(DE-HGF)0$$aDöring, Thomas$$b5
001041486 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b6
001041486 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2025.114739$$gVol. 324, p. 114739 -$$p114739 -$$tRemote sensing of environment$$v324$$x0034-4257$$y2025
001041486 8564_ $$uhttps://juser.fz-juelich.de/record/1041486/files/1-s2.0-S0034425725001439-main.pdf$$yOpenAccess
001041486 8767_ $$d2025-08-04$$eHybrid-OA$$jDEAL
001041486 909CO $$ooai:juser.fz-juelich.de:1041486$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001041486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001041486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b1$$kFZJ
001041486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190393$$aForschungszentrum Jülich$$b2$$kFZJ
001041486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b3$$kFZJ
001041486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b6$$kFZJ
001041486 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001041486 9141_ $$y2025
001041486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041486 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001041486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001041486 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041486 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001041486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001041486 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001041486 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001041486 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001041486 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001041486 920__ $$lyes
001041486 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001041486 9801_ $$aFullTexts
001041486 980__ $$ajournal
001041486 980__ $$aVDB
001041486 980__ $$aUNRESTRICTED
001041486 980__ $$aI:(DE-Juel1)IBG-2-20101118
001041486 980__ $$aAPC