001     1041486
005     20250804202236.0
024 7 _ |a 10.1016/j.rse.2025.114739
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02272
|2 datacite_doi
024 7 _ |a WOS:001471626900001
|2 WOS
037 _ _ |a FZJ-2025-02272
082 _ _ |a 550
100 1 _ |a Krämer, Julie
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Downscaling the full-spectrum solar-induced fluorescence emission signal of a mixed crop canopy to the photosystem level using the hybrid approach
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746516696_19037
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Remote sensing of hyperspectral vegetation reflectance and solar-induced chlorophyll fluorescence (SIF) isessential for evaluating crop functionality and photosynthetic performance. While primarily applied in monocultures,these tools show promise in diverse cropping systems, enhancing ecological intensification. Plant-plantinteractions in such systems can influence key physiological processes, such as photosynthesis, making SIF avaluable tool for evaluating how crop diversity affects photosynthetic function and productivity. However,detecting SIF in diverse stands remains challenging due to uncertainties in light re-absorption and scattering. Toaddress these challenges, we propose a hybrid model inversion framework that combines canopy observationswith physical modeling to derive leaf biochemical, canopy structural variables, and SIF spectra at leaf andphotosystem levels. This approach employs a machine learning retrieval algorithm (MLRA), trained on syntheticspectra from radiative transfer model (RTM) simulations, to quantify re-absorption and scattering effects. Usingthe SpecFit retrieval algorithm, the temporal evolution of full-spectrum SIF at the canopy level can be derived. Todownscale SIF to the photosystem level and retrieve its quantum yield, we corrected the canopy SIF spectrum forre-absorption and scattering effects calculated from TOC reflectance. Spectral measurements were gathered fromfield experiments conducted over three years, covering various growth stages of cereal and legume monocropsand their mixture. Our method accurately predicts important leaf biochemical and canopy structural variables,such as leaf area (LAI, R2 = 0.75) and leaf chlorophyll content (LCC, R2 = 0.91), and shows a general highretrieval performance for light absorption (fAPARChl, R2 = 0.99 for the internal model validation). We confirmedthe reliability of our method in modeling re-absorption and scattering processes by comparing canopy SIFdownscaled to the leaf level with independent leaf-level SIF measurements. While the results show a goodprediction accuracy in terms of fluorescence magnitude at the leaf level, we did not find a strong agreement ofcorresponding leaf and canopy measurements at the single plot level.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 1
700 1 _ |a Castro, Antony Oswaldo
|0 P:(DE-Juel1)190393
|b 2
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 3
700 1 _ |a Pude, Ralf
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Döring, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 6
773 _ _ |a 10.1016/j.rse.2025.114739
|g Vol. 324, p. 114739 -
|0 PERI:(DE-600)1498713-2
|p 114739 -
|t Remote sensing of environment
|v 324
|y 2025
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/1041486/files/1-s2.0-S0034425725001439-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041486
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190393
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21