001041523 001__ 1041523
001041523 005__ 20250423082438.0
001041523 0247_ $$2doi$$a10.48550/arXiv.2504.11413
001041523 037__ $$aFZJ-2025-02297
001041523 1001_ $$0P:(DE-HGF)0$$aTilgner, Niclas$$b0$$eFirst author
001041523 245__ $$aSolving the Phase Problem of Diffraction:X-ray Standing Waves Imaging on Bismuthene/SiC(0001)
001041523 260__ $$c2025
001041523 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745389051_24867
001041523 3367_ $$2ORCID$$aWORKING_PAPER
001041523 3367_ $$028$$2EndNote$$aElectronic Article
001041523 3367_ $$2DRIVER$$apreprint
001041523 3367_ $$2BibTeX$$aARTICLE
001041523 3367_ $$2DataCite$$aOutput Types/Working Paper
001041523 520__ $$aThe phase retrieval problem is a fundamental shortcoming of all diffraction-based methods, arising from theinability to measure the phase of scattered waves. The (normal incidence) X-ray standing wave (NIXSW) techniquecircumvents this issue by introducing a (Bragg-generated) X-ray standing wave field throughout the sample, rela-tive to which any atomic species can be localized by probing its fluorescence or photoelectron yield. In essence,in a single measurement the complex scattering factor (i.e., its amplitude and phase) corresponding to the usedBragg reflection is determined. Performing this for multiple Bragg reflections enables one to reconstruct the scat-tering density of the sample in three dimensions, straightforwardly as the Fourier sum of all measured (complex)scattering factors. Here, we utilize this technique to reveal the structural key features involved in the formation ofthe quantum spin Hall insulator bismuthene on silicon carbide. In this prominent example, the two-dimensional Bilayer is confined between a 4H-SiC substrate crystal and an epitaxial graphene layer. The key finding is a changein the adsorption site of the Bi atoms underneath the graphene upon hydrogenation, caused by the H-saturation ofone (out of three) Si dangling bonds per unit cell. This structural change, clearly revealed by our NIXSW imagingexperiment, is the key feature leading to the formation of the characteristic band structure of the 2D bismuthenehoneycomb.
001041523 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041523 536__ $$0G:(GEPRIS)385975694$$aSFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)$$c385975694$$x1
001041523 588__ $$aDataset connected to DataCite
001041523 7001_ $$0P:(DE-HGF)0$$aWolff, Susanne$$b1
001041523 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b2
001041523 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b3
001041523 7001_ $$0P:(DE-HGF)0$$aGöhler, Fabian$$b4
001041523 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b5$$ufzj
001041523 7001_ $$0P:(DE-HGF)0$$aSeyller, Thomas$$b6
001041523 7001_ $$0P:(DE-HGF)0$$aSchädlich, Philip$$b7$$eCorresponding author
001041523 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b8$$eCorresponding author$$ufzj
001041523 773__ $$a10.48550/arXiv.2504.11413
001041523 909CO $$ooai:juser.fz-juelich.de:1041523$$pVDB
001041523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001041523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b5$$kFZJ
001041523 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b8$$kFZJ
001041523 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041523 9141_ $$y2025
001041523 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041523 980__ $$apreprint
001041523 980__ $$aVDB
001041523 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041523 980__ $$aUNRESTRICTED