001     1041523
005     20250423082438.0
024 7 _ |a 10.48550/arXiv.2504.11413
|2 doi
037 _ _ |a FZJ-2025-02297
100 1 _ |a Tilgner, Niclas
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Solving the Phase Problem of Diffraction:X-ray Standing Waves Imaging on Bismuthene/SiC(0001)
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745389051_24867
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The phase retrieval problem is a fundamental shortcoming of all diffraction-based methods, arising from theinability to measure the phase of scattered waves. The (normal incidence) X-ray standing wave (NIXSW) techniquecircumvents this issue by introducing a (Bragg-generated) X-ray standing wave field throughout the sample, rela-tive to which any atomic species can be localized by probing its fluorescence or photoelectron yield. In essence,in a single measurement the complex scattering factor (i.e., its amplitude and phase) corresponding to the usedBragg reflection is determined. Performing this for multiple Bragg reflections enables one to reconstruct the scat-tering density of the sample in three dimensions, straightforwardly as the Fourier sum of all measured (complex)scattering factors. Here, we utilize this technique to reveal the structural key features involved in the formation ofthe quantum spin Hall insulator bismuthene on silicon carbide. In this prominent example, the two-dimensional Bilayer is confined between a 4H-SiC substrate crystal and an epitaxial graphene layer. The key finding is a changein the adsorption site of the Bi atoms underneath the graphene upon hydrogenation, caused by the H-saturation ofone (out of three) Si dangling bonds per unit cell. This structural change, clearly revealed by our NIXSW imagingexperiment, is the key feature leading to the formation of the characteristic band structure of the 2D bismuthenehoneycomb.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
536 _ _ |a SFB 1083 A12 - Struktur und Anregungen von hetero-epitaktischen Schichtsystemen aus schwach wechselwirkenden 2D-Materialien und molekularen Schichten (A12) (385975694)
|0 G:(GEPRIS)385975694
|c 385975694
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Wolff, Susanne
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Tien-Lin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Göhler, Fabian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-Juel1)128791
|b 5
|u fzj
700 1 _ |a Seyller, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schädlich, Philip
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/arXiv.2504.11413
909 C O |p VDB
|o oai:juser.fz-juelich.de:1041523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21