
The present work was submitted to the
Visual Computing Institute (RWTH Aachen University)

and to the
Jülich Supercomputing Centre (Forschungszentrum Jülich)

Rheinisch-Westfälische Technische Hochschule Aachen
Informatik 13, Visual Computing Institute

Exploring Linguistic Proximity in C4
Multilingual Data through Efficient

Embedding Model Analysis and
Visualization on HPC

Sahand Rahmdel
(Matr.-Nr.: 424069)

March 24, 2025

1st Examiner Prof. Dr. Bastian Leibe
2nd Examiner Prof. Dr. Stefan Kesselheim
1st Supervisor Dr. Jiangtao Wang
2nd Supervisor Dr. Oleg Filatov

Abstract

This thesis investigates the proximity of different languages and
different language families by analysing how multilingual text data
are represented in a shared latent space, focusing on the Colossal
Clean Crawled Corpus (C4) with a multilingual extension (mC4).
The main focus is to determine whether embeddings of different
languages group together based on their linguistic families, topi-
cal content, or both. This is achieved through a high-performance
computing (HPC) system to embed 6.1TB of textual data from 24
diverse languages. The BAAI bge-m3 embedding model served to
create embeddings of dimension 1,024, which were stored in a vector
database using ChromaDB to facilitate scalable analysis and query-
ing.

Subsequent dimensionality reduction with t-distributed Stochas-
tic Neighbor Embedding (t-SNE) allowed for the visualization of
language clusters in two-dimensional space for a simpler and bet-
ter understanding. Results reveal that similar thematic or topical
content often drives the embedding model to generate vectors that
lie close together, even from different languages. However, certain
clusters reflect linguistic closeness—especially among languages from
the same family—indicating that the model also recognizes linguistic
features. Overall, the thesis uses multilingual embeddings to check
the existence of any relation between the semantic representation
of texts as vectors (embeddings) and the linguistic structure of the
origin languages, demonstrating how HPC resources, combined with
advanced embedding models, can efficiently handle large datasets
and offer deeper insights into language proximity and topic similar-
ity analysis.

i

Acknowledgments

I would like to express my sincere gratitude to Prof. Dr. Bastian Leibe,
Chair of Computer Vision at RWTH Aachen University, for his invalu-
able support and for providing me with the opportunity to conduct this
research. His pioneering work in computer vision, object detection, and
recognition has been a great inspiration, and I am deeply appreciative of
his guidance throughout this project.

I am especially grateful to Prof. Dr. Stefan Kesselheim, head of the
Simulation and Data Lab Applied Machine Learning and Artificial Intel-
ligence at the Jülich Supercomputing Centre (JSC), for accepting me into
his team, and providing me with this chance and opportunity. Working
in such a profound environment has greatly enriched my research experi-
ence, and taught me a lot. I cannot express my gratitude enough for his
support and help.

My deepest appreciation goes to my supervisor, Dr. Jiangtao Wang,
for his unwavering support and patience in addressing my numerous ques-
tions and needs. His guidance has been instrumental in the successful
completion of this thesis.

I would also like to thank Dr. Oleg Filatov and Jan Ebert from the
JSC team for their insightful ideas and guidance, which have significantly
contributed to my work.

My heartfelt gratitude extends to my loving mother and sister, for
their unwavering support and encouragement. I dedicate this work to the
memory of my late father, whom I sadly lost to COVID-19.

Finally, I acknowledge the High-Performance Computing resources
available at Forschungszentrum Jülich, which were essential for the suc-
cessful execution of this project. I am profoundly grateful for the kindness
and support of all the professors, colleagues, and friends who have accom-
panied me on this journey.

iii

Contents

Abstract i

Acknowledgments iii

Contents v

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Goal . 2
1.3 Thesis Contributions . 2

1.3.1 Multilingual Embedding and Distribution Process . 2
1.3.2 Vector Storage and Efficient Retrieval 2
1.3.3 Semantic Similarity Measurement 2
1.3.4 Dimensionality Reduction and Visualization 3

1.4 Outline . 3

2 Background and Related Work 5
2.1 Natural Language Processing (NLP) 5

2.1.1 Text Mining . 5
2.1.2 Text Preprocessing 6
2.1.3 Tokenization . 7

2.2 Autoencoders and Latent Space 8
2.2.1 Latent Space . 9
2.2.2 Embeddings . 10
2.2.3 Vector Databases . 11

2.3 Attention Mechanism and Transformers 11
2.3.1 Attention in Natural Language Processing 12
2.3.2 Computing Attention 13
2.3.3 Self-Attention . 16
2.3.4 The Transformer . 18

2.4 Visualization and Metrics of Similarity 20
2.4.1 t-SNE . 20
2.4.2 Cosine Similarity . 21

2.5 The Dataset . 21

v

Contents

2.5.1 C4 . 21
2.5.2 mC4 . 22
2.5.3 AllenAI mC4 . 22

2.6 BAAI bge-m3 Embedding Model 23
2.7 Related Work . 24

2.7.1 Exploring Cross-Domain Semantic Similarity through
Embedding Models 24

2.7.2 Continual Pretraining and Domain Adaptation in
LLMs . 24

2.7.3 Relation to This Work 25
2.7.4 Methodological Similarities 25
2.7.5 Brief Summary . 26

3 Conceptual Approach 27
3.1 Methodological Framework 27
3.2 The Dataset . 28
3.3 The Embedding Model . 29
3.4 Storing the Embeddings - The Vector Database 30
3.5 Similarity Measurement . 30
3.6 Dimensionality Reduction and Visualization 30

3.6.1 Mathematical Formulation of t-SNE 31
3.7 Summary of the Conceptual Approach 32

4 Implementation 33
4.1 Downloading the Dataset 33
4.2 Dataset Structure . 33

4.2.1 English Dataset . 34
4.2.2 Multilingual Dataset 34

4.3 Generating Embeddings from the Dataset 35
4.3.1 Imports and Environment Setup 35
4.3.2 Model Initialization 35
4.3.3 Dynamic Batch Size Determination and Mean Pooling 35
4.3.4 Checkpointing and ChromaDB Initialization 36
4.3.5 Processing the Dataset and Running the Embedding

Model . 37

5 Evaluation and Discussion 39
5.1 Required Scripts . 39
5.2 Research Question . 39
5.3 A Controlled Dataset for Understanding t-SNE Visualizations 41
5.4 t-SNE Representation of Embeddings using Gaussian Fitting 43
5.5 t-SNE Visualization of Mean Embeddings of Different Sam-

ple Sizes . 45
5.6 Lessons Learned . 49

vi

Contents

6 Conclusion 51

References 53

Appendix 57
Appendix A . 57
Appendix B . 58

License 65

vii

Abbreviations

AI Artificial Intelligence
AllenAI Allen Institute for Artificial Intelligence
BAAI Beijing Academy of Artificial Intelligence
BERT Bidirectional Encoder Representations from

Transformers
C4 Colossal Clean Crawled Corpus
CPU Central Processing Unit
GPU Graphics Processing Unit
HPC High-Performance Computing
IR Information Retrieval
JSON JavaScript Object Notation
LLM Large Language Model
M2D2 Massively Multi-Domain Dataset
mC4 Multilingual Colossal Clean Crawled Corpus
NER Named Entity Recognition
NLP Natural Language Processing
NMT Neural Machine Translation
OOM Out-of-Memory
POS Part-of-Speech
RNN Recurrent Neural Network
RoBERTa A Robustly Optimized BERT Pretraining

Approach
SBERT Sentence-BERT
t-SNE t-distributed Stochastic Neighbor Embedding
UUID Universally Unique Identifier

ix

1Introduction

1.1 Motivation
There are vast amounts of data from many different languages across
the internet, which can be used to train multilingual language models.
However, to be able to use this data, it needs to be collected, cleaned, and
processed [1]. The Colossal Clean Crawled Corpus - Common Crawl (C4)
dataset is a large-scale dataset that contains roughly 750 GB of textual
data from web pages in English [2]. Even though having the data is a good
start, it is essential to gain knowledge about the data to know how it can
be used effectively. The more is known about the dataset, the topics it
covers, and how its topics are shared across different languages, the better
it can be utilized in machine learning tasks [3].

One of the challenges of a large dataset like C4 is that the resources are
not equally distributed for all of the languages [2]. While high-resource
languages like English are well represented, some languages have signif-
icantly fewer resources [2]. This imbalance affects the performance of
multilingual language models, particularly for low-resource languages [4].

Embedding models are a popular choice for representing textual data
in a continuous vector space. These models are used in various natu-
ral language processing tasks, such as text classification, named entity
recognition, and machine translation [5–7]. In embeddings, latent space
refers to a mathematical space where data points (in this case, text repre-
sentations) are embedded as vectors, capturing meaningful patterns in a
compressed and abstract form. This representation is “latent” because it
is not directly observable, but derived through machine learning models
like embedding models [5].

This thesis leverages embedding models and t-SNE dimensionality re-
duction technique to visualize the relationships between languages in the
C4 dataset. By using t-SNE to reduce the dimensionality of multilingual
embeddings, this study seeks to identify whether languages with similar
linguistic properties cluster together. Visualizing these clusters could help
identify relationships in multilingual embeddings that are otherwise hid-
den. The gained insights contribute to understanding the effectiveness of
multilingual embeddings in capturing linguistic proximity and may pro-

1

1. Introduction

vide information about the content of the C4 dataset and topic overlaps
between various languages for future research to improve the performance
for low-resource languages.

1.2 Thesis Goal
This thesis aims to analyze the latent representations of multilingual
datasets, specifically focusing on embeddings generated from the C4 multi-
lingual dataset. By leveraging techniques such as t-Distributed Stochastic
Neighbor Embedding (t-SNE) for visualization, this research provides in-
sights into how languages cluster within shared latent spaces. This thesis
investigates the types of clusters that emerge in the dataset and whether
the clustering is by linguistic similarities and language families (shared lan-
guage families) or by thematic and topical similarities, where data points
are grouped based on similar subjects (e.g., Science, Health, etc.).

High-Performance Computing (HPC) systems are powerful computers
that use parallel processing and specialized hardware to perform complex
computations at high speeds. The practical aspect of this thesis involves
efficient use of computational resources, employing parallel processing on
an HPC system, and utilizing a vector database for scalable storage and
analysis of embeddings. These contributions not only offer methodolog-
ical advancements but also provide a foundation for future strategies in
multilingual model training and evaluation.

1.3 Thesis Contributions

1.3.1 Multilingual Embedding and Distribution Process

This thesis uses 24 selected languages from the mC4 dataset, from diverse
language families and different resource availability. Text samples are
embedded using the bge-m3 model, which is selected for its multilingual
capabilities.

1.3.2 Vector Storage and Efficient Retrieval

To facilitate scalable storage and retrieval of high-dimensional embed-
dings, a vector database (ChromaDB) is used. ChromaDB provides ef-
ficient handling of embeddings, and structured data management, which
are critical for subsequent analysis.

1.3.3 Semantic Similarity Measurement

To quantify relationships between embeddings, cosine similarity is em-
ployed. This metric evaluates the semantic closeness of different language

2

1.4. Outline

samples, allowing for an initial exploration of multilingual similarity pat-
terns.

1.3.4 Dimensionality Reduction and Visualization
Since the embeddings exist in a high-dimensional space (1,024 dimen-
sions), t-SNE is applied to reduce the dimensionality, enabling visualiza-
tion of clustering patterns among languages in a 2D space. This step
helps understand potential linguistic groupings and relationships within
the embedding space. By analyzing the resulting clusters, the thesis pro-
vides insights into how languages relate within a shared embedding space.

1.4 Outline
This thesis is structured as follows:

In chapter 2, the necessary background knowledge, topics and termi-
nologies are explained, discussing the evolution of natural language pro-
cessing, embedding models, and visualization techniques like t-SNE. This
chapter guides the reader through the concepts required to understand
this thesis. Additionally, related works and the existing literature on em-
beddings, and their relation to this thesis are presented. The chapter
discusses the methodologies and findings of previous studies.

In chapter 3, the methodology and techniques used in this thesis are
explained, so that a general idea of the approach can be obtained.

Chapter 4 builds on this section, and delves deeper into the technical
details of the implementation. Every step is explained in detail, from data
collection to visualization.

In chapter 5, Evaluation and Discussion, the results of the implementa-
tion are presented and discussed in detail, and the implications of findings
are explored. The chapter explores the findings and insights gained from
the analysis of multilingual embeddings, and explains the results and re-
lations observed in the t-SNE plots.

Finally, in chapter 6, the thesis is summarized, and the contributions
and findings are revisited. The chapter also provides a reflection on the
research process and the lessons learned during the thesis work.

3

2Background and Related Work

2.1 Natural Language Processing (NLP)
Natural language processing (NLP) focuses on understanding and pro-
cessing human language, and it aims to develop techniques for computers
to understand and analyze natural language text. NLP tasks include
sentence parsing, text categorization, machine translation, question and
answer systems, sentiment analysis, and much more [8].

2.1.1 Text Mining
To be able to understand textual data, text mining and its applications
should be explored. Preprocessing methods are needed to produce consis-
tent multilingual inputs when generating embeddings. This section pro-
vides an overview of text mining, text preprocessing, and challenges re-
lated to NLP, which are helpful in understanding the subsequent sections.

As a broad field that includes information retrieval (IR) and NLP, text
mining has a range of different applications, such as:

• Unsupervised Learning (e.g., document clustering)
• Supervised Learning (e.g., sentiment analysis)

or
• Language-dependent Tasks (e.g., machine translation)
• Language-independent Tasks (e.g., keyword extraction)
The goal is to turn data into a format such that data science and ma-

chine learning techniques (e.g., clustering, classification, prediction, etc.)
could be applied to [9].

Example of Applications
• Document Clustering: A form of unsupervised task, with the goal

of grouping documents based on a text, topic, or content similarity.
• Document Classification: A form of supervised task, which aims

to predict a specific label for a document based on its content.
• Keyword Extraction: For instance, to identify significant terms

in a text.

5

2. Background and Related Work

• Machine Translation: Automatically translating from one lan-
guage to another.

Some Unique Fields and Challenges Related to NLP
• Named Entity Recognition (NER): To find and recognize named

entities in a text and label them according to the contextual infor-
mation: For instance, “person”, “location”, etc. [10]

• Part-Of-Speech (POS) Tagging: To label words with their corre-
sponding part of speech. For example, “noun”, “verb”, “adjective”,
etc.

• Coreference Resolution: To identify words and expressions that
refer to the same entity in a text. For example, what “he” refers to,
in an example sentence: “I had dinner with Sam, because he invited
me.”

• Ambiguity: In natural languages, context matters, since natural
languages are complex and require substantial preprocessing. For
instance, a complex sentence like “Buffalo killed a buffalo in Buffalo.”
is rather difficult for preprocessing.

• Homonyms: Some words could have several different meanings,
even though all the variations are written with the same syntax.
(E.g., Sign, Firm, Tie, Fly, Watch, etc.)

Some more challenges are prepositional attachment, anaphora resolu-
tion, presupposed and hidden information, etc.

2.1.2 Text Preprocessing
The first challenge of text mining is to go from unstructured data (text) to
structured data (numbers). Texts are usually unstructured [9], requiring
transformation into structured data through methods such as tokenization
[11] and stop-word removal [12]. Or that the “length” of a single unit of
information may vary dramatically. In order to make text “processable”,
a text has to go through multiple steps of transformation.

Initially, a corpus needs to be selected from the data sources. Then,
the corpus needs to be divided into pieces that are consistent, e.g., words,
sentences, paragraphs, tweets, posts. The pieces of text in the corpus are
often called documents (regardless of nature and size, e.g., tweets, e-mails,
webpages, articles, chapters, etc.) [9, 13].

An annotated corpus is a corpus in which the documents or elements
within the documents have been annotated with additional information to
work as a training set for a specific application [14]. These texts are usually
annotated by hand. The early innovations in NLP were only possible
thanks to the people who annotated tens of millions of texts by hand back
in the 80s [13–15].

6

2.1. Natural Language Processing (NLP)

After a corpus is obtained or generated, the text has to go through a
preprocessing phase. This step is where things like tokenization, stop-word
removal, and token normalization (stemming or lemmatization) happen.

2.1.3 Tokenization
Tokenization means splitting a text into similar units called “tokens”. The
units chosen for tokenization are very task- and language-dependent, but
usual units are words, characters, ideograms, phonemes, syllables, sen-
tences, phrases, clauses, and more [11, 16].

In tokenization, languages differ from each other greatly. It is impor-
tant to note that tokenization is not trivial, not even into words. There
are specific tokenizers, and this process is usually specifically designed ad
hoc for a certain task, since it is very application-dependent [11].

Stop-Word Removal
Stop-word Removal refers to removing words that are not informative [12].
For example, articles, prepositions, pronouns, such as ‘the’, ‘as’, ‘in’, ‘me’,
‘you’, ‘which’, ‘on’, etc.

A list of stop-words is called a stop list. Stop lists are language-
dependent. Here are common examples of what a stop list would com-
monly contain in the English language:

• ‘Be’ and ‘have’ verbs: ‘is’, ‘are’, ‘am’, ‘was’, ‘have’, ‘has’, etc.
• Articles: ‘the’, ‘a’, ‘an’, etc.
• Auxiliary verbs: ‘will’, ‘should’, ‘would’, ‘shall’, ‘must’, etc.
• Prepositions: ‘in’, ‘to’, ‘from’, ‘through’, ‘of’, ‘by’, ‘on’, etc.
• Question words: ‘who’, ‘what’, ‘which’, ‘where’, ‘when’, ‘how’,

‘why’, etc.

Stemming
Stemming means the process of reducing words to their word stem, base,
or root form using different methods, for example, removing suffixes [17].

For instance: “compute”, “computer”, “computers”, “computing”, “com-
putational” 7→ “comput”

Lemmatization
Unlike stemming, lemmatization applies vocabulary and morphological
analysis, aiming to remove inflectional endings and return the base or
dictionary form of a word, known as the lemma [18].

For instance: “compute”, “computer”, “computers”, “computing”, “com-
putational” 7→ “compute” (lemmatization) vs “comput” (stemming).

7

2. Background and Related Work

Token Normalization
Stemming and lemmatization are the main forms of token normalization.
The process of transforming tokens to make them comparable is called
token normalization [17].

Some examples of other forms of normalization include:
• Case-folding: Refers to the process of converting everything into

lowercase format.
• Alternative spelling: Means considering different spellings (e.g.,

British vs. American) “color” and “colour”.

2.2 Autoencoders and Latent Space
This thesis builds on the idea of a ‘latent space’ by investigating how mul-
tilingual transformers encode multiple languages into a shared embedding
space, thus uncovering cross-lingual relationships. To understand these
concepts, this section provides an overview of autoencoders, latent space,
embeddings, and vector databases. Autoencoders not only demonstrate
how data can be compressed into a reduced representation, but they also
illustrate how information from diverse languages can be unified in a single
shared latent space. This is particularly useful in cross-lingual settings, as
similar linguistic structures or semantic relationships (regardless of lan-
guage) tend to occupy nearby regions in that space, enabling effective
multilingual analysis and retrieval.

Figure 2.1: Architecture of an Autoencoder and representation of Latent
Space

Imagine a neural network, where the input and output layers are both
of dimension N , and a hidden layer of dimension K with K being sig-
nificantly smaller than N . This neural network has one training task:
the goal is to reconstruct the input. This is used to create a compact
representation for a word, document, image, etc. [17]

The encoder encodes the input into a vector with fewer dimensions in
an approach to “compress” it and learn a compressed representation of a

8

2.2. Autoencoders and Latent Space

certain input in a latent feature space or embedding space. The output
of the hidden layer (latent space) is that compressed representation that
was sought. The compression ratio is N/K [17].

These neural networks are called autoencoders [19], and present an
example of how it is possible to automatically learn a representation of
the data. Learning a (often smaller) representation of data is called em-
bedding. When applied to text, it is referred to as word embeddings.
It is possible to split an autoencoder into the encoding and decoding parts
after the training.
As it can be seen from 2.1, the model consists of two parts:

• Encoder: Reduces the input data to a smaller, compressed repre-
sentation (latent space).

• Decoder: Reconstructs the original input from this compressed
representation.

2.2.1 Latent Space
Latent space is the middle layer between the encoder and decoder, and
it holds the compressed representation of the data, also called an embed-
ding. This representation captures essential features of the data in a more
efficient and compact form. Since it captures the core structure of the in-
put, it allows for efficient data representation and transformation. The
latent space helps in tasks like clustering, classification, or generating new
data based on learned features, and it is where the input data is mapped
into a simpler form that retains the most important information needed
to reconstruct the original input or perform other tasks. [5]

Formally, latent space is defined as an abstract multi-dimensional space
that encodes a meaningful internal representation of externally observed
events. Samples that are similar in the external world are positioned close
to each other in the latent space.

Latent Space in Embeddings
In embeddings, latent space refers to a mathematical space where data
points (in this case, text representations) are embedded as vectors, cap-
turing meaningful patterns, features, or relationships in a compressed and
abstract form. This representation is “latent” because it is not directly
observable, but derived through machine learning models like embedding
models (e.g., transformers). The goal of embedding text into a latent
space is to preserve the semantic relationships between the inputs in a
way that can be efficiently processed by a machine [5].

In NLP, word embeddings are numerical representations of words so
that similar words have close representations. Thus, word embeddings
lie in a latent space where every word is encoded into a low-dimensional
semantic vector [5].

9

2. Background and Related Work

Shared Latent Space

A shared latent space specifically refers to a single, unified representation
space where data from multiple languages is embedded. In multilingual
models, this shared space allows representations of texts from different
languages to coexist and ideally align based on their semantic similarities
[20]. For example:

• Words or phrases with similar meanings across languages (e.g., “cat”
in English, “gato” in Spanish, and “Katze” in German) should have
embeddings that are close to each other in the shared latent space.

• Language-specific characteristics or clusters may still emerge, but
they exist within the same overarching embedding structure.

A shared latent space is central to multilingual NLP because:
1. Cross-Language Transfer: Models trained in one language can

transfer knowledge to others when their embeddings share common
structures, enabling tasks like zero-shot translation or multilingual
sentiment analysis.

2. Cluster Analysis: Analyzing how languages are distributed or
cluster in this space reveals insights into linguistic relationships (e.g.,
similarities between language families or imbalances caused by train-
ing data).

3. Equity: Understanding shared latent spaces helps in mitigating
biases, ensuring underrepresented languages are not poorly repre-
sented or marginalized.

Latent space is the abstract representation of text data, and a shared
latent space reflects how multiple languages are encoded together in a
way that captures their interrelations and individual nuances [20].

2.2.2 Embeddings

Embeddings are numerical representations of entities such as text, images,
and audio, specifically designed for machine learning models and semantic
search algorithms. These representations encode the features, attributes,
and categorical associations depending on similarities and differences of
the features of the mentioned objects into a numerical format suitable for
processing [5].

This allows machine learning models to identify similar entities. For
instance, in NLP, given a text or a document, a machine learning model
could use embeddings to identify similar words or sentences. Embed-
dings allow models to understand the relationships and semantics between
words and other objects. Technically, embeddings are vectors created by
machine-learning models (autoencoders) to capture meaningful data and
better representations about objects and entities [5].

10

2.3. Attention Mechanism and Transformers

Embedding is the process of creating vectors using deep learning meth-
ods. Embeddings that are close to each other, can be considered similar
[5].

2.2.3 Vector Databases

In machine learning, using vectors makes finding similar entities possi-
ble. It is simpler to find two vectors that are close together in a vector
database, rather than understanding similarities between two different en-
tities in other forms. A typical vector database for a deep learning model
is composed of embeddings. In other words, a vector database is a col-
lection of vectors (data) stored as numerical representations. They make
it easier for machine learning models to remember previous inputs, and
this enables machine learning to be used in searching and text generation.
Instead of identifying exact matches, vectors allow the data to be identi-
fied based on similarity metrics. This allows the model to understand the
data in a rather contextual way [21].

Each vector in a vector database corresponds to an object or item. In
NLP, that is usually a word, sentence, or a document. In other areas, it
could be an image or any other piece of data. These vectors are usually
very complex, meaning that the representation and location of each object
is defined along very high dimensions [22].

Vector databases are used by similarity and semantic searches for clus-
tering similar and possibly relevant items together. This can be used in
many different applications. Some real-world examples are: to recom-
mend similar products in an online shop, to suggest songs or movies in
entertainment platforms, etc. [21, 22]

The ability to find relevant items of data has enabled machine learning
(and deep learning) models to do complex cognitive tasks. Large Language
Models (LLMs) also rely on the contextual analysis of text made possible
by vector databases. By identifying relations between words, sentences,
and documents, LLMs can understand natural language and generate text
[21].

2.3 Attention Mechanism and Transformers
Since the chosen embedding model in this thesis relies on the transformer
architecture, the attention mechanisms directly influence how multilingual
texts are encoded, and thus shape the shared latent space. This section
provides an overview of attention mechanisms and transformers, which are
fundamental to understanding how multilingual embeddings are created.

The concept of attention was first studied in the context of computer
vision to recognize some objects in an image [23]. It was shown to be
effective in selectively attending to parts of the source sentence while

11

2. Background and Related Work

generating the target sentence. Other real-world applications such as au-
tomatic speech recognition in listen, attend, and spell model (LAS) and
NLP showcase the practicality and effectiveness of attention mechanisms
[24–26]. In 2014, attention was used to highlight specific parts of an image
that relate to a desired output [23].

Figure 2.2: Attention mechanism used in computer vision to recognize
buildings in the image [27].

In Fig. 2.2 there are two buildings. The task on hand is object detec-
tion, where the objective is to recognize buildings. What the figure tries
to demonstrate here is a heat map, that is overlaid on top of the image.
This heat map shows the pixels or the region where buildings are more
likely to be in the red part.

If some network is trained to do some classification, an interesting
question is whether the network comes up with the right class when it
outputs a class. For instance, the network could also be asked to highlight
where the building is, if it claims that there is indeed a building in the
image. This could be a decent way to validate and understand what it
thinks a building is and whether or not it is correct.

Attention can be used to identify which pixels correspond to the con-
cept of a building, and the resulting heat map indicates the attention
weights for those pixels. In this scenario, one can envision an attention
mechanism that spans the entire image, assigning weights to every pixel.
The model would then determine which pixels carry semantic significance
or embeddings aligned with the target object to be recognized.

2.3.1 Attention in Natural Language Processing

In NLP (natural language processing) and NMT (neural machine trans-
lation) the work about machine translation was introduced [24], where
the decoder could be used to effectively peek or look back at what the
input sentence was so that it would not lose track of what it is translating
and it does not have to remember the sentence completely. This was an

12

2.3. Attention Mechanism and Transformers

important breakthrough that enabled dealing with sentences of arbitrary
(and more importantly, very long) length [24].

In 2017 researchers showed that attention can be used to develop gen-
eral language modeling techniques [25]. Here, language modeling refers
to the idea of developing a model that would predict the next word in
a sequence. It could generate words and then if there is a word miss-
ing somewhere in a sequence, it could also recover that missing word. In
essence, a language model is a system that can predict or recover missing
words in a sequence. Many tasks in NLP can be formulated as language
modeling problems. For instance, translation can be viewed as a sequence
prediction task: the first part of the sequence is a sentence in the source
language, and the model then continues the sequence in the target lan-
guage by predicting the next words. Thus, many tasks in NLP can be
framed as variants of language modeling. Vaswani et al. demonstrated
that an architecture using almost exclusively attention blocks could be
designed; they named this architecture ’the Transformer’.

attention(q, k, v) =
∑
i

similarity(q, ki)× v (2.1)

2.3.2 Computing Attention

Figure 2.3: Attention mechanism mimics the retrieval of the value vi for
a query q based on a key ki in the database [27].

Attention can essentially be thought of as being some form of approx-
imation of a selection that would be done in a database. As shown in
Fig.2.3, in a database, to retrieve a value based on some query and some
key, an operation can be done, where a query is used to identify a key that
aligns well and outputs the corresponding value. Attention can effectively
be conceived as imitating the retrieval process but in a more probabilistic
manner. What is measured in (2.1) is the similarity between the query q,
and each key ki. Then this similarity is going to return a weight and then
a weighted combination of all the values in the database will be produced
as an output.

13

2. Background and Related Work

In the following, (2.1) will be decomposed into distinct steps, and each
step will be explained in more detail individually.

Computing the Similarity

Attention is used to determine which parts of the input sequence are
most relevant to a given query. In this case, the query Q, key K, and
value V matrices represent different aspects of the input sequence. The
query matrix, Q, represents the current query or task that the model is
trying to perform, the key matrix, K, represents the elements in the input
sequence, and the value vectors in the matrix V are weighted using the
weights resulting from the softmax operation, so V represents the values
or output that the model wants to compute.

In (2.2) s corresponds to the similarity of the query q to each key
vector ki, where:

si = f(q, ki) (2.2)

There are many functions which can be considered for f(q, ki). Including
the dot product: qTki, or the scaled dot product: qTki/

√
(dk), where

d is the dimensionality of each key, and is normally used to avoid the
dot product from becoming too large. As shown in (2.2) in the first
step of computing attention, the scaled dot product of the query and key
matrices, QKT /

√
dk is calculated. This results in a matrix that has the

same number of rows as the query matrix and the same number of columns
as the key matrix.

Figure 2.4: Computing Attention [27]

14

2.3. Attention Mechanism and Transformers

Computing the Weights

In the next step, the weights need to be computed. To do that, the
resulting matrix si is passed through a softmax function to compute the
attention weights ai, as shown in (2.3).

ai =
exp si∑
j exp sj

(2.3)

The softmax function maps the similarity values si to a probability distri-
bution, where each element in the output matrix represents the probability
that the corresponding key element should be considered when computing
the output.

Computing the Final Attention Value

Finally, the attention weight ai is multiplied by the value vectors vi to
obtain the final attention output, as shown in (2.4). This output is a
weighted sum of the values, where the weights are determined by the
similarity between the keys and the query.

attention value =
∑
i

aivi (2.4)

As shown in Fig. 2.4 this is a general scheme, where a query q, and some
keys ki are given, and the goal is to produce an output where the output
is a linear combination of the values vi, where the weights ai come from
some notion of similarity between they query and the keys.

Figure 2.5: Part of the attention mechanism was focusing on ”The Ani-
mal”, and baked a part of its representation into the encoding of ”it” [28].

15

2. Background and Related Work

2.3.3 Self-Attention
Self-attention is when the attention mechanism is used for a sequence to
attend to different parts of itself when processing each element [29]. It
takes into consideration the relationship among words within the same
sentence. The model attends to different parts of the sequence while
processing each element [29].
Fig 2.5 is an example to better visualize the model’s ability to attend to
different parts of itself. The animal didn’t cross the street because it was
too tired.

In Fig. 2.5 it can be observed, the word ”it” is mostly focused on the
word ”The Animal”. It understands what ”it” refers to in the sentence.

Figure 2.6: Multi-Head Attention [25]

Multi-Head Attention

Self-attention could be further refined and expanded by adding multiple
attention heads to it. This allows it to attend to different elements simul-
taneously and expands the model’s ability to focus on different positions
at once [25]. This involves splitting the input into multiple heads (sub-
spaces), effectively creating multiple sets of Q, K, and V vectors, and
applying attention mechanisms independently to each head, rather than
using a single attention head. This now allows the model to attend to
different parts of the sequence, and capture different aspects or patterns
in the data simultaneously [25]. The outputs from all heads are then
concatenated using (2.5) and linearly transformed to produce the final
attention-weighted representation, as demonstrated in Fig. 2.6.

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (2.5)

where headi = Attention(QWQ
i ,KWK

i , V W V
i) [25]

When revisiting the previous example in Fig. 2.7, this time the multi-
head attention will be taken into use instead of single-head self-attention.

16

2.3. Attention Mechanism and Transformers

It can now be seen, with one attention head (orange) the word ”it” still
focuses on ”The Animal” and the other head (green) focuses on ”tired”,
which means, it now knows the word ”it” refers to an animal, which is
tired.

Figure 2.7: When encoding the word ”it”, one attention head is focusing
on ”the animal”, while another is focusing on ”tired” [28].

Masked Multi-Head Attention

The next concept is called masked self-attention, which is used to prevent
the decoder from ”peeking” into the future when generating the target
sequence. This is done by masking certain positions in the decoder’s self-
attention mechanism so that the decoder can only attend to positions that
come before the current position in the input sequence. The idea of having

Figure 2.8: The mask matrix is an upper triangular matrix with entries
above the main diagonal set to −∞.

masked attention is that some of the values should be masked, meaning
that the probability should be nullified, so that they do not create any
combinations. So for instance, in the decoder when the output is produced
in a machine translation task, there exists a sentence (for example) in

17

2. Background and Related Work

English, and the goal is to translate that into French. The words are
produced in French, and when a word is produced, then it is acceptable
for that word to depend on the previous words in the translation, because
they are being generated sequentially, but that word should not depend
on the future words, because they have not been produced yet. So, what
needs to be done is to essentially change the attention mechanism, so that
the links that would create dependencies on words that have not been
generated yet would be nullified or effectively removed.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.6)

Masked attention(Q,K, V) = softmax(
QKT +M√

dk
)V (2.7)

where M is a mask matrix of 0’s and −∞’s [25]
This is what is call masked multi-head attention. The main difference

with normal multi-head attention is that in the attention mechanism, a
softmax function is computed according to (2.6), but now, according to
(2.7), with masked attention, a mask is going to be added, that will effec-
tively produce some probabilities, that are zero for the terms that should
not be attended to, because they would be future terms. In (2.3) if there
was a mask, which is as shown in Fig. 2.8, an upper triangular matrix of
0’s and −∞’s, when calculating exp(−∞), the result is 0. So this has the
effect of ensuring that the probabilities of certain items here are going to
be 0, and this will have the same effect as removing connections.[27]

2.3.4 The Transformer
The Transformer architecture is encoder-decoder based. The encoder en-
codes the input sequence into a representation, and the decoder has to
generate the target sequence from this representation. Both the encoder
and the decoder consist of self-attention and feed-forward neural network
layers, which can be seen in Fig. 2.9.

The Encoder

The encoder is composed of a stack of N = 6 identical layers. Each layer
has two sublayers: a multi-head attention and a simple position-wise fully
connected feed-forward network, which is used to transform the output
into a new representation, and is applied to each position separately and
identically. Other than these, a residual connection is employed around
each of the two sublayers, followed by layer normalization. Since the
Transformer was originally proposed for translation tasks, the inputs are a
series of words. Because there are no words when calculating probabilities,
the words should be converted into numbers. There are different ways to

18

2.3. Attention Mechanism and Transformers

Figure 2.9: Transformer Model Architecture [25]

do so. The computer could be given a dictionary, where each number
represents a word, but there is a better method, called word embedding.
Word Embedding is a method of representing words with vectors in such a
way, that similar words have similar vectors. For instance, words like cat
and dog should have similar vectors, but words like cat and car should have
relatively different vectors, despite having similar characters. In positional
encoding, the purpose is to add some information about positions before
feeding the embeddings to the encoder, allowing them to differentiate
between words with similar meanings but different positions in a sentence,
because word positions matter a lot in sentences. A good example to show
the importance of positional encoding is two sentences with the same set of
words, which have completely different meanings. The sentences Mercedes
defeated Red Bull and Red Bull defeated Mercedes contain the same words
but convey entirely different meanings simply due to the change in word
order. The attention block is followed by an add and norm layer, which
can be seen in Fig. 2.10. In this layer, first, the sum of the output
vector of the attention block and the input embedding vector is calculated,
which was retrieved in the first step. The result is then subjected to layer
normalization. Normalized data plays an important role in increasing
the training speed and reducing bias. The general rule and purpose is
to process the output from one attention layer in a way that better fits

19

2. Background and Related Work

Figure 2.10: Add and Norm Layer [25]

the input for the next attention layer. The residual connections send the
output of each sublayer to the add and norm block of the next layer.

The Decoder

The decoder is also composed of a stack of N = 6 identical layers. Other
than that, the decoder also inserts a third sublayer, which performs multi-
head attention over the output of the encoder stack. In the second atten-
tion layer of the decoder, the Key K and Value V data come only from the
top encoder block to each and every decoder block. However, the Query
Q data is taken from the first attention layer of the decoder.

2.4 Visualization and Metrics of Similarity
Visualization is a powerful tool to understand complex data and their
relationships. Through visualization it is possible to find and identify
patterns, which would otherwise remain hidden in the data. In the context
of machine learning, visualization is used to understand the relationships
between data points, clusters, and dimensions. It is particularly useful
in understanding the behavior of models and the quality of the data.
One of the visualization techniques using dimensionality reduction is t-
Distributed Stochastic Neighbor Embedding (t-SNE).

This thesis relies on t-SNE to visually inspect how embeddings of dif-
ferent languages cluster in a high-dimensional space.

2.4.1 t-SNE

Visualizing high-dimensional data is usually difficult, but is an important
problem, which deals with data of many different dimensionalities. t-
Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality

20

2.5. The Dataset

reduction technique used for visualizing high-dimensional data in a lower-
dimensional space [30]. In a t-SNE plot, the closer the datapoints are, the
more similar they are in the high-dimensional space. t-SNE is particu-
larly useful for visualizing relationships between data points in a complex
dataset, such as embeddings [30]. This trait of t-SNE makes it useful
for visualizing embeddings in a shared latent space, as it can reveal pat-
terns that are not immediately apparent with looking at the raw data or
the embedding vectors, and makes the understanding of the relationships
between different languages easier.

2.4.2 Cosine Similarity
A way to compute the similarity of two vectors is to check whether two
vectors are pointing in roughly the same direction and to calculate the
angle between them. For this purpose, cosine similarity is used, a widely
employed measure in natural language processing. The angle between two
vectors is calculated as shown in (2.8).

cos(θ) =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

=
A ·B

‖A‖ · ‖B‖
(2.8)

Where:
• A and B are the embedding vectors.
• ‖A‖ and ‖B‖ are the norms of these vectors.
The cosine similarity value can range as follows:

• 1: Perfect alignment or maximum similarity
• 0: No similarity
• -1: Complete opposition

2.5 The Dataset
This thesis focuses on 24 selected languages from different families to
observe how the chosen embedding model groups them in latent space.
This section provides an overview of the dataset used in this thesis.

2.5.1 C4
The dataset used in this thesis is an updated and advanced version of the
original Colossal Clean Crawled Corpus (C4) dataset, which is a large-scale
multilingual dataset containing web pages in multiple languages. The C4
dataset is a valuable resource for training multilingual language models,
as it provides a diverse range of textual data across numerous languages
[2]. The size of the dataset makes it useful for studying and understanding
the different content and topics covered in it. It comprises approximately

21

2. Background and Related Work

750 GB of data, focusing on natural language content, and has undergone
extensive cleaning and preprocessing to ensure high quality and consis-
tency [2]. It is primarily intended for pretraining language models and
word representations. The largest version of publicly available C4 dataset
consists of the following: 305GB cleaned JSON files, 2.3TB uncleaned files
and 15GB of real news like data. This dataset is deprecated [2].

2.5.2 mC4
The multilingual C4 (mC4) dataset is an extension of the C4 dataset that
includes natural text in 108 languages, also sourced from the Common
Crawl web scrape. This multilingual variant allows for analysis on the
difference between a wide variety of topics and different languages. This
extension is significantly larger than the original version, with over 13.5
TB of data, making it a rich resource for multilingual NLP research [31].

2.5.3 AllenAI mC4
This version includes all the same parts of the C4 dataset, but also includes
9.7TB (108 languages) multilingual data. This is the most up-to-date
version of the dataset [32]. In this thesis, 24 languages have been chosen
from the dataset. When choosing these languages several factors were
taken into consideration. The goal was to choose languages from both
similar and different language families to see how they would cluster in the
shared latent space. Also, the languages chosen should have been availble
in the dataset, and compatible with the embedding model used. Another
criterion was that some languages should have a lot of data available in
the dataset, when others do not, so it was important to choose languages
with variable data availability. After many considerations, the following
24 languages were chosen: English (en), German (de), Dutch (nl), Swedish
(sv), Norwegian (no), Danish (da), Spanish (es), French (fr), Italian (it),
Portuguese (pt), Romanian (ro), Russian - Latin (ru, ru-Latn), Polish (pl),
Czech (cs), Farsi (fa), Irish (ga), Finnish (fi), Hungarian (hu), Chinese -
Latin (zh, zh-Latn), Arabic (ar), former Hebrew (iw), Tamil (ta), Telugu
(te), Japanese - Latin (ja, ja-Latn). Table 2.11 demonstrates the selected
languages (with their corresponding fammilies, and language groups).

This covers a wide range of language families, including Indo-European
languages like Germanic, Romance, Slavic, Indo-Iranian, and Celtic lan-
guages, as well as Uralic, Dravidian, Japonic, and Afro-Asiatic languages.
The dataset is expected to provide a diverse set of linguistic features
and relationships for analysis. The Germanic languages (English, Ger-
man, Dutch, Swedish, Norwegian, Danish) are quite similar to each other.
The Romance languages (Spanish, French, Italian, Portuguese, Roma-
nian) also share many similarities. On the other hand, Mandarin Chinese
from the Sino-Tibetan family is quite dissimilar from the Indo-European

22

2.6. BAAI bge-m3 Embedding Model

Table 2.11: List of languages chosen, grouped by language family and
subgroup.

Language
Family

Subgroup Languages (Code)

Indo-
European
Languages

Germanic Languages English (en), German (de),
Dutch (nl), Swedish (sv),
Norwegian (no),
Danish (da)

Romance Languages Spanish (es),
French (fr), Italian (it),
Portuguese (pt),
Romanian (ro)

Slavic Languages Russian (ru),
Russian-Latin (ru-Latn),
Polish (pl), Czech (cs)

Indo-Iranian Languages Farsi (Persian) (fa)
Celtic Languages Irish (ga)

Uralic Lan-
guages

Finnish (fi),
Hungarian (hu)

Sino-
Tibetan
Languages

Chinese (zh),
Chinese-Latin (zh-Latn)

Afro-
Asiatic
Languages

Arabic (ar),
former Hebrew (iw)

Dravidian
Languages

Tamil (ta), Telugu (te)

Japonic
Languages

Japanese (ja),
Japanese-Latin (ja-Latn)

languages. Similarly, Dravidian languages (Tamil, Telugu) and Afro-
Asiatic languages (Arabic, Hebrew) are also quite different from the Indo-
European languages.

2.6 BAAI bge-m3 Embedding Model
The embedding model used in this thesis is the BAAI bge-m3 model [33].
This model has been trained on a mixture of unsupervised, supervised,
and synthetic data across multiple languages and it is a multilingual model
that can generate embeddings for 108 languages. The model is based on

23

2. Background and Related Work

the transformer architecture, which is known for captureing long-range
dependencies in text data using attention mechanism. It is capable of
processing inputs of different lengths, from short sentences to long docu-
ments up to 8192 tokens [33]. In the bge-m3 model, the dimension count,
which is the size of the embedding, or the number of features that each
token is represented by is 1024. This value is important because it shows
the capacity of the model to encode the information in each vector [33].

2.7 Related Work
2.7.1 Exploring Cross-Domain Semantic Similarity through

Embedding Models
Yildiz et al. propose in the paper Investigating Continual Pretraining
in LLMs, through embedding models, to find semantic similarity across
domains [34]. This work explores the application of continual pretrain-
ing in LLMs for cross-domain knowledge transfer evaluation. The study
has utilized the Massively Multi-Domain Dataset (M2D2) [34, 35], a hi-
erarchically structured corpus containing 236 domains sourced, of which
159 were chosen in this study (excluding domains exceeding 5GB of data)
from platforms such as Wikipedia and Semantic Scholar. The main pur-
pose was to measure the adaptability of LLMs when exposed to varying
domain contexts, while retaining previously learned knowledge and in-
creasing forward and backward transfer abilities.

The authors implemented Sentence-BERT (SBERT) as their embed-
ding model used in the experiments on domain similarity [34, 36]. SBERT,
is a variant of BERT for sentence-level tasks, which authors used to en-
code task embeddings by processing 10,000 samples from each domain,
and another 50,000 samples from OpenWebText. Further analysis was
made on these embeddings using cosine similarity to quantify the rela-
tionship of various domains. A t-SNE plot is provided to visualize the
embeddings, which allows identifying semantically similar domains. The
results indicate that embedding-based representations are able to capture
both domain-specific and cross-domain semantic relations. This helped
in evaluating continual pretraining strategies, especially when combined
with analyses of domain ordering and knowledge transfer.

2.7.2 Continual Pretraining and Domain Adaptation in LLMs
The work [34] is grounded in continual learning and domain adaptation.
This current study is an extension of [37], which tested the transfer ca-
pabilities of a RoBERTa model on four domains. More research, such
as [38], has shown continually pre-trained RoBERTa and BERT to be
robust in avoiding catastrophic forgetting, when tested on downstream
tasks. On another note, a soft-masking strategy for continual pretraining

24

2.7. Related Work

in RoBERTa was found to be effective when applied across a variety of
tasks [39].

While [34] refers to such studies in order to introduce the context of
continuous pretraining, their main contribution is evaluating cross-domain
similarity and knowledge transfer. Their approach, by using SBERT, co-
sine similarity, and t-SNE visualization, is what separates their work from
previous research that mostly dealt with task performance and domain-
specific fine-tuning. Their approach not only puts the focus on the adapt-
ability of embedding models like SBERT to cross-domain scenarios, but
also explains how domain ordering impacts knowledge retention and trans-
fer in LLMs.

2.7.3 Relation to This Work
The methodologies in the work [34] provided the main inspiration for this
thesis. Their use of embedding models for domain similarity analysis and
the application of cosine-similarity metric and t-SNE for simple and un-
derstandable visualization directly shaped and influenced this thesis to
explore lingual proximity. However, this thesis has a different focus and
application. While their work analyzes cross-domain relationships, this
thesis looks into the proximity of languages through the embeddings cre-
ated by multilingual models. The main hypothesis for this thesis states
that embeddings can uncover linguistic relations and family cluster, inde-
pendent of semantic meaning. This extends the idea of encoding structural
and semantic properties in embeddings to a whole new level, studying lan-
guage families and their relations.

Another difference refers to the analytical methods. While [34] were
interested in domain similarity using cosine similarity metrics, this thesis
adapts these ideas to measure linguistic proximity, namely how close or
far are embeddings of different languages. By adapting their methods to a
multilingual context, this thesis uses their results while addressing a new
research question.

2.7.4 Methodological Similarities
This study shares some very important similarities with the study [34]
Specifically:

Embedding Models: Both studies use embedding models, that is,
SBERT used in their study and the BAAI bge-m3 multilingual embed-
ding model used in this thesis for representing and encoding textual data
in high-dimensional vector spaces.

Cosine Similarity: Although cosine similarity was utilized to measure
relationships between embeddings in different domains [34], in this thesis
it was not considered an impactful metric because it consistently yielded
very high similarity values. This thesis, therefore, relied more on t-SNE

25

2. Background and Related Work

visualizations to investigate and point out linguistic differences and simi-
larities.

t-SNE Visualization: While t-SNE was a valuable tool for visualiz-
ing embeddings and clarifying results in their study, it played an even
more important role in this thesis by being the main way to analyze and
highlight linguistic differences and similarities.

2.7.5 Brief Summary
The study [34] is a foundational and essential reference for the study of
embedding-based similarity analysis for this thesis, particularly for the re-
lationships between domains. While their study focuses more on domain-
specific knowledge transfer and continual pretraining, this thesis extends
the idea to a linguistic domain to investigate the relations of languages
and the representation of language families in a shared embedding spaces.
This approach emphasizes the flexibility of embedding models in capturing
both semantic and structural features, thereby providing deeper insight
into the dataset and its contents.

26

3Conceptual Approach

3.1 Methodological Framework

A concrete plan and approach are necessary for working toward the goals
of this thesis and assessing the validity of the hypothesis. This chapter
explains the conceptual approach to exploring linguistic proximity, and
conducting the required analyses. Each step of the approach is explained
in detail, and the reasoning behind the choices made is provided.

Fig. 3.1 demonstrates the approach to exploring linguistic proximity.
The main idea is to select a multilingual dataset, embed the texts using a
multilingual model, store the resulting vectors in a vector database, mea-
sure similarity with cosine similarity, and apply t-SNE for dimensionality
reduction and visualization to be able to conduct the analysis in an easier
and more understandable manner.

Figure 3.1: Conceptual approach to exploring linguistic proximity.

27

3. Conceptual Approach

3.2 The Dataset

The main idea for the implementation is to choose the dataset first. Some
criteria need to be followed to select a suitable dataset. The dataset
should contain many different languages. It should also be formatted in a
way that allows efficient processing and compatibility with the embedding
model.

After considering the requirements, the mC4 dataset was chosen. The
mC4 dataset is a multilingual variant of the C4 dataset. It consists of
natural text in 101 languages drawn from the public Common Crawl web
scrape. To choose the languages from the dataset, a limited number of
languages had to be selected.

The idea was to choose languages from both similar and dissimilar
families. The resource availability of languages correlates with the qual-
ity of the results, with more resources leading to better outcomes. This
introduces the challenge of choosing languages with different amounts of
resources available. Fig. 3.2 shows the dataset sizes for the 24 chosen
languages grouped by language families and subgroups.

Figure 3.2: Dataset sizes, grouped by language families and subgroups
[31].

28

3.3. The Embedding Model

3.3 The Embedding Model

The suitable model should be multilingual to be able to handle multiple
languages and be able to generate embeddings for them. It should also be
able to handle the different scripts and characters of the languages. By
doing this, the essence of the languages can be captured in the embeddings,
which are essentially comparable vectors, and mathematical operations
can be performed on them.

Based on the mentioned points and the embedding model rankings
available on Hugging Face [40], it was decided to continue with the mul-
tilingual BAAI bge-m3 model [33]. Table 3.3 provides an overview of the
model’s specifications and features.

Table 3.3: Specifications and specialties of the bge-m3 model.

Feature Description
Model Name bge-m3
Developer Beijing Academy of Artificial In-

telligence (BAAI)
Dimensions 1,024
Maximum Sequence Length 8,192 tokens
Multi-Functionality Supports dense retrieval, multi-

vector retrieval, and sparse re-
trieval

Multi-Linguality Processes text in over 100 lan-
guages

Multi-Granularity Handles inputs ranging from
short sentences to long docu-
ments up to 8,192 tokens

Training Approach Unified fine-tuning encom-
passing dense, sparse, and
multi-vector (ColBERT) re-
trieval methods

License MIT License
Source Hugging Face Model Card

29

https://huggingface.co/BAAI/bge-m3

3. Conceptual Approach

3.4 Storing the Embeddings - The Vector
Database

The next step is to find the most efficient and effective way to save these
embeddings locally. That is, a vector database. But there are several
different vector databases available, with their own advantages, and dis-
advantages. Among the available options (e.g., Milvus, Pinecone, Weav-
iate, Qdrant), ChromaDB was chosen for its ease of use, native Python
API, and compatibility with Hugging Face workflows. ChromaDB makes
it very simple to save and manage embeddings from bge-m3.

3.5 Similarity Measurement
Cosine similarity is used to measure the similarity between two embed-
dings. Cosine similarity is a common metric for language embeddings be-
cause it captures the orientation (rather than magnitude) of the vectors,
which translates to how semantically “aligned” two sentences or docu-
ments are. In practice, pairs or sets of embeddings are queried within
ChromaDB and cosine similarity scores are computed to assess potential
relationships.

Although detailed interpretation of results is explained in a later chap-
ter, the main outlook is that higher cosine similarity scores may imply that
two texts (whether in the same language or across different languages)
share semantic or topical overlap, which does not provide much informa-
tion about the specific languages themselves, or their relations to other
languages.

cos(θ) =

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

=
A ·B

‖A‖ · ‖B‖
(3.1)

3.6 Dimensionality Reduction and Visualization
With 1,024-dimensional embeddings, it is difficult to intuitively see inter-
language relationships. To address this, t-SNE is applied to project the
embeddings from their original dimensionality down to two dimensions.
This helps in visualizing potential language clusters, family groups, or
outlier points.

The t-SNE visualization is repeated across multiple sample sizes (for
instance, 10 to 200k samples) to capture how different volumes of data
might influence the relative positioning of languages. The goal is to deter-
mine whether certain clusters remain stable or if patterns become more
pronounced as sample size increases.

Observing a consistent and similar clustering pattern across different
sample sizes indicates that the language embeddings are capturing robust

30

3.6. Dimensionality Reduction and Visualization

and reproducible relationships. If the same languages consistently group
together (especially those belonging to the same family), it suggests that
the underlying semantic representations do not significantly depend on the
sample size. Also, it is ensured that the identified clusters reflect genuine
linguistic relationships, rather than artifacts of a particular sample subset.

3.6.1 Mathematical Formulation of t-SNE
In this subsection, the equations and concepts underlying t-SNE are ex-
plained to provide a deeper understanding of the method’s operation
[30]. t-SNE operates by constructing probability distributions that model
the pairwise similarities between data points in both the original high-
dimensional space and the lower-dimensional embedding space.

High-Dimensional Probability Distribution
In the high-dimensional space, the similarity between two points xi and
xj is computed using a Gaussian distribution:

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k ̸=i exp(−‖xi − xk‖2/2σ2

i)
(3.2)

where σi is the variance of the Gaussian centered at xi. The joint
probability distribution is then symmetrized as:

pij =
pj|i + pi|j

2n
(3.3)

where n is the number of points in the dataset.

Low-Dimensional Probability Distribution
To model pairwise similarities in the low-dimensional space, t-SNE re-
places the Gaussian kernel with a Student-t distribution with one degree
of freedom:

qij =
(1 + ‖yi − yj‖2)−1∑
k ̸=l(1 + ‖yk − yl‖2)−1

(3.4)

where yi and yj are the low-dimensional representations of xi and xj .

Cost Function: Kullback-Leibler Divergence
t-SNE minimizes the Kullback-Leibler (KL) divergence between the high-
dimensional and low-dimensional probability distributions:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(3.5)

This cost function ensures that the structure of the data is preserved
when transitioning from the high-dimensional space to the low-dimensional
representation.

31

3. Conceptual Approach

Gradient Descent Optimization
To minimize C, t-SNE updates the embeddings via gradient descent using
the following gradient:

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 (3.6)

This optimization ensures that similar points in high-dimensional space
remain close together while avoiding overcrowding.

By applying these transformations, t-SNE provides an effective method
for visualizing complex high-dimensional relationships in a more inter-
pretable two-dimensional space.

3.7 Summary of the Conceptual Approach
In summary, the conceptual workflow is:

1. Select a multilingual dataset (mC4) and narrow it to 24 languages
spanning various language families.

2. Embed the texts using the bge-m3 model, chosen for its multilingual
embedding abilities and robust semantic representation.

3. Store the resulting vectors in a Chroma database, which simplifies
handling of high-dimensional embeddings.

4. Measure similarity with cosine similarity to assess semantic similar-
ity across samples.

5. Apply t-SNE for dimensionality reduction and visualization of the
embedding space, experimenting with multiple sample sizes to eval-
uate the consistency of clustering.

This plan is a conceptual approach to exploring linguistic proximity,
analyzing where these languages stand in relation to each other. The more
detailed experimental procedures and their corresponding outcomes will
be presented in later chapters.

32

4Implementation

4.1 Downloading the Dataset
The initial step is to download the dataset locally for easier and faster ac-
cess during preprocessing and running the embedding model. The dataset
is downloaded from HuggingFace’s dataset library. This could be done us-
ing either a python script, or a bash script using Git. The second option
was chosen to benefit from Git LFS (Large File Storage) to download the
dataset.

Below is the bash script used to download the dataset. The script
clones the dataset repository without downloading the large files. Then,
it pulls the large files for the selected languages.

#!/bin/bash

Step 1: Clone the repository without downloading large files
GIT_LFS_SKIP_SMUDGE=1 git clone

https://huggingface.co/datasets/allenai/c4
cd c4

Step 2: Pull specific large files for multiple languages
languages=("en" "de" "nl" "sv" "no" "da" "es" "fr" "it" "pt" "ro"

"ru" "pl" "cs" "fa" "ga" "fi" "hu" "zh" "ar" "iw" "ta" "te" "ja")
for lang in "${languages[@]}"; do

git lfs pull --include "${lang}/*"
done

After downloading the dataset locally on the HPC, the embedding
model could be started to process the dataset. The rest of the work is
done using python scripts.

4.2 Dataset Structure
It is crucial to know the structure of the dataset exactly before continuing
the implementation. First, the dataset is loaded into the directory c4 and
the structure of the dataset is as follows:

33

4. Implementation

en, en.noblocklist, en.noclean, multilingual, realnewslike

There are five directories and one README.md file. The en direc-
tory contains the English dataset, en.noblocklist contains the English
dataset without the blocklist, en.noclean contains the English dataset
without cleaning, multilingual contains the multilingual dataset, and
realnewslike contains the real news-like dataset.

Two directories are of particular interest to us: the en directory and
the multilingual directory.

4.2.1 English Dataset
The structure of the en directory is as follows:
It contains more than a thousand .gz Gzip compressed files. The naming
convention for these .gz files are as follows:

c4-train.00000-of-01024.gz,
c4-train.00001-of-01024.gz,
c4-train.00002-of-01024.gz

and so on, until the validation sets start:

c4-train.01023-of-01024.gz,
c4-validation.00000-of-00008.gz,
c4-validation.00001-of-00008.gz

and so on.
So, the general naming convention is as follows:

c4-train.XX-of-01024.gz

for the training set and

c4-validation.XX-of-00008.gz

for the validation set.

4.2.2 Multilingual Dataset
The structure of the multilingual directory is a little bit different, and
as follows:

c4-\{lang\}.*.json.gz

files, where lang is the language code. For example, a training set would
be

c4-af.tfrecord-00000-of-00064.json.gz

34

4.3. Generating Embeddings from the Dataset

for Afrikaans,

c4-de.tfrecord-00000-of-02048.json.gz

for German, and so on. The validation sets for each language are named
similarly to the training sets, but with the word validation added to the
name e.g.,

c4-af-validation.tfrecord-00000-of-00001.json.gz

for Afrikaans.

4.3 Generating Embeddings from the Dataset
To process the dataset, a detailed python script is written to extract the
data from the Gzip files, clean the data, and save it in a format that can
be used by the embedding model. The script is written in a way that it
can process both the english and multilingual data from the dataset. See
6 for the full python script.

4.3.1 Imports and Environment Setup
After importing some standard python libraries (e.g., os, glob, json, uuid,
etc.) along with third-party libraries such as PyTorch, Hugging Face’s
Transformers, Datasets and Sentence Transformers, tqdm for progress
bars, and ChromaDB for persisent embedding storage, the environment
variables are set.

4.3.2 Model Initialization
Then the model and the built in tokenizer are initialized. The script uses
the BAAI bge-m3 model with a sequence length of 512, which sets the
maximum token length per input, and a maximum batch size of 2048,
which acts as an initial upper bound for batching, which is adjustable
based on available GPU memory. After the tokenizer and model are ini-
tialized and loaded via Hugging Face’s APIs, the model is moved to GPU
(’cuda’) and set to evaluation mode.

4.3.3 Dynamic Batch Size Determination and Mean Pooling
The the function get_optimal_batch_size is defined to dynamically
determine the largest batch size that does not cause an out-of-memory
(OOM) error on the GPU. This function creates a dummy batch of test
sentences and iteratively increases the batch size until an OOM error is
encountered. The batch size is then reduced by a factor of 2 and returned
as the optimal batch size. This ensures efficient use of GPU memory

35

4. Implementation

without manual tuning and guessing. Fig. 4.1 is a flowchart diagram,
explaining the dynamic batch size determination process.

Figure 4.1: Flowchart, describing the funtion get_optimal_batch_size
that is used to find the optimal batch size dynamically.

The function mean_pooling is defined to calculate the mean of the
embeddings of the tokens in a sentence. This function is used to calculate
the sentence embeddings for the dataset by aggregating the token embed-
dings into a single sentence embedding. It uses the attention mask to
compute a weighted average (sum of embeddings divided by the sum of
mask values) to generate a fixed-size embedding per input sentence.

4.3.4 Checkpointing and ChromaDB Initialization
Since the HPC has a limited allowed runtime for each process (24h) the
script had to be run multiple times to process the entire dataset for the
selected languages. Therefore, it was necessary to come up with a way
to resume the processing from where it was left off. A checkpoint loader
function load_checkpoint was defined to load the last processed file and
continue from there. This function loads a JSON file (checkpoint.json)
that contains the last processed language to track which languages have
already been processed to avoid redundant computation.

Next, a persistent ChromaDB client is initialized with a custom storage
path inside the script direcory. It creates a collection (c4_embeddings)
where the embeddings, along with other necessery metadata (like language
information) will be stored.

To handle the existing data, a function load_existing_data is defined
to query the ChromaDB collection for existing embeddings to determine
how many samples have already been processed.

36

4.3. Generating Embeddings from the Dataset

4.3.5 Processing the Dataset and Running the Embedding Model
The main processing step starts here. Fig. 4.2 demonstrates all the neces-
sary steps. For each language, the function process_language performs
these steps:

Figure 4.2: Steps of processing the dataset.

1. Target Check
Compare the existing number of samples from the ChromaDB

collection with the desired sample size (e.g., 200k) to determine if
the language has already been processed. If the desired sample size
has been reached, the language is skipped.

2. File Selection
Uses glob to match file patterns (for english and multilingual

files) and iterates over the files.
3. Dynamic Batch Size Determination

Calls get_optimal_batch_size to determine the optimal batch
size that can be used on the current GPU.

4. Data Sampling
Randomly selects a subset of files (without any duplicates, using

a processed_files set).
Uses Hugging Face’s streaming mode via load_dataset to effi-

ciently load large JSON files without having to load the entire file
into memory.

Extracts the text field from each example until the needed sam-
ples are collected.

5. Embedding Data Generation
The model computes embeddings, which are mean-pooled.
The collected texts are batched and tokenized.
A unique ID is generated for each sample using uuid.
Embeddings and the language metadata and the original text

are stored in the ChromaDB collection.
6. Checkpointing

After the processing for a language is complete, the language
code (two letters e.g., ’en’) is stored in the checkpoint file.

37

4. Implementation

Then the script loops through the list of defined languages and calls
process_language for each language. The progress can be observed and
tracked visually by the progress bars, and after completion, a final message
confirms that all embeddings have been processed and stored.

38

5Evaluation and Discussion

5.1 Required Scripts
To evaluate the generated embeddings, some additional scripts have been
written. Most important ones are:

• sampled_embeddings.py: To sample 1k random points (vectors)
from the generated embeddings for each language.

• mean_embeddings.py: To calculate the mean embeddings for each
language.

• tsne-mean-of-1k-samples.py: To apply t-SNE on the mean em-
beddings.

• interactive_tsne_plot.py: To apply t-SNE on 1,000 random points
and produce an interactive plot interactive plot with plotly that
allows hovering over each data point to reveal its ID for retrieving
the original sentence.

• sampled_visualizer_gaussian.py: To create a 2D Gaussian on
top of the 1k random points for each language.

• retrieve_sentence_by_id.py: Where the input is the ID of the
embedding, and it will retrieve the original sentence (before getting
embedded).

• cosine.py: To compute the cosine similarity between the mean
embeddings of each language.

Running these scripts yields a better understanding of the embeddings
and the relationships between languages, as they produce plots and visu-
alizations that are easier to interpret.

5.2 Research Question
This thesis investigates the types of clusters that emerge in the dataset.
It examines whether the clustering is:

1. by linguistic similarities (shared language families) or
2. by thematic and topical similarities, where data points are grouped

based on common subject areas (e.g., Science, Health, etc.).

39

5. Evaluation and Discussion

To uncover the relationships between datapoints from different lan-
guage families (represented by different colors) and determine whether
they cluster based on their language groups, they first needed to be vi-
sualized. After visualizing a 24,000-point subset (1,000 per language) of
the total of 4,800,000 embeddings generated (200,000 per language) and
examining the t-SNE plot in Fig. 5.1, no clear clustering pattern was ob-
served among datapoints belonging to the same language family (same
color). To investigate further, the points overlapping in a randomly cho-
sen region marked by the red arrow (in the lower-right section of the plot)
were manually selected, retrieved, and translated to analyze their content.

Figure 5.1: Random 24,000-point subset (1,000 per language) of the
4,800,000 total generated embeddings - Highlighted random section of
the t-SNE plot in red, where points are overlapping

When zoomed in, two of the overlapping datapoints of different colors,
randomly chosen for analysis, were related to French and Japanese text
samples. It is guessed that the reason behind this overlap is a similarity
between the topics or semantics of the original texts.
To test this, the original points, as seen in Fig. 5.2, were retrieved using
retrieve_sentence_by_id.py and translated using DeepL:

((a)) French sample information ((b)) Japanese sample information

Figure 5.2: French and Japanese sample texts

40

5.3. A Controlled Dataset for Understanding t-SNE Visualizations

The translations for each retrieved text:

French datapoint: You live in Villenave-De-Rions and you are look-
ing for a serious clairvoyant, recognized for her predictions and able
to help you immediately in your next decisions. Contact me from
Villenave-De-Rions Monday to Friday from 10am to 10pm and Sat-
urday from 10am to 12pm. Villenave-De-Rions Live and online clair-
voyance.

Japanese datapoint: Feng Shui, Psychic, Psychic Reading, Clairvoy-
ance, Spiritual Reading, Aura Reading, Aura Diagnosis, Chakras,
Reiki Healing Love, Marriage, Work, Career, Luck, Life counsel-
ing. My name is Chris, a telephone fortune teller for women only.
I use psychic reading to divine your future. By connecting with
your guardian deity, I can help you with your life and future. I can
read your purpose and your role in this life based on your past life
evaluation. Chakra reading will purify your soul.

Both are advertisements with similar content, focusing on clairvoyance.
This observation suggests that the embedding model maps sentences

with similar semantics to similar vectors. When these vectors are plot-
ted using t-SNE, datapoints that appear close to each other represent
text with related topics and meanings (sometimes so close that they may
appear to strongly overlap). This behavior is observed regardless of the
language (or the color of the datapoints). In other words, the multilingual
embedding model used here encodes texts based on their semantics (the
“gist” or “essence”) rather than the specific language.

Up until this point, the influence of semantics on the positioning of the
datapoints in the t-SNE plot has been tested. In the following analysis,
the influence of languages and language families will be considered to
determine whether they affect the positioning of the datapoints, or if the
context and topics of the text are the only determining factors of the
position of the datapoints on the t-SNE plot.

5.3 A Controlled Dataset for Understanding
t-SNE Visualizations

To investigate further, a very small dataset was manually created, con-
sisting of only 10 sentences across 10 distinct topics. These 10 sentences
were manually translated into each of the 24 languages, producing a total
of 240 sentences. The embedding model was run on this custom dataset,
and t-SNE was applied to the resulting embeddings to visualize them in
a shared space. This process aimed to deepen the understanding of the
generated embeddings, with particular focus on the clusters formed and
the relationships between the datapoints plotted using t-SNE.

41

5. Evaluation and Discussion

Table 5.3 demonstrates the topics and sentences of the manually cre-
ated dataset in English:

Table 5.3: Topics and their corresponding example sentences (10 total).

Topic Sentence
Sports The match ended in a thrilling 2-2 draw.
Technology Artificial intelligence is transforming industries world-

wide.
News A major earthquake struck the city, causing

widespread damage.
Science Astronomers discovered a new planet outside our solar

system.
Health Mental health awareness is crucial in today’s fast

paced world.
Environment Climate change is one of the most pressing issues of

our time.
Business Stock markets around the world experienced signifi-

cant growth last year.
Education Online learning has become a popular alternative to

traditional classrooms.
Literature The poet captured the beauty of nature in vivid words.
Culture Traditional festivals bring communities together in cel-

ebration.

Fig. 5.4 shows the t-SNE plot of the 240 vectors (10 sentences × 24
languages).

Figure 5.4: The t-SNE plot of 240 vectors (10 distinct sentences in 24
languages)

42

5.4. t-SNE Representation of Embeddings using Gaussian Fitting

As can be observed, the embeddings visualized by the t-SNE plot
appear to form 10 distinct clusters. The embedding model successfully
captured the semantics of each sentence, indicating that, regardless of
the language, the model discerns the semantic differences among the sen-
tences. Since there were 10 distinct topics in the dataset, the embeddings
appear in 10 separate clusters. This result is consistent with the hypoth-
esis that the model encodes the semantics of the sentences, regardless of
the language they are written in.

5.4 t-SNE Representation of Embeddings using
Gaussian Fitting

Revisiting the previous plot with 1,000 points per language, to better vi-
sualize the structure of language embeddings and reduce the complexity
of plotting all 1,000 individual points for each language resulting in 24,000
datapoints in total (as done in Fig. 5.1), in Fig. 5.5 each language was rep-
resented by a multivariate Gaussian distribution in the 2D t-SNE space,
where the center corresponds to the mean embedding of the language, and
the ellipse captures its spread and correlation structure. This approach
provides a more interpretable visualization by summarizing the distribu-
tional properties of each language while highlighting areas of overlap and
distinction between them.

Figure 5.5: 1,000 randomly picked samples from each language (24 lan-
guages) after applying the 2D Gaussian

A strong overlap in the Gaussians is observed, indicating that the 1,000
points randomly selected for each language cover a similar set of topics.
This behavior remains consistent across the chosen languages. Another
important insight arises when zooming in on the mean embeddings and
analyzing their behavior, which will be discussed in the next section.

43

5. Evaluation and Discussion

To test whether the semantics of the topics in different languages are
similar, the cosine similarity between the mean embeddings of each lan-
guage was calculated. Fig. 5.6 shows the results:

Figure 5.6: Cosine Similarity between the mean embeddings of each lan-
guage

As it can be seen in Fig. 5.6, the cosine similarity for every pair of mean
embeddings is consistently high (>0.9). However, this does not necessarily
mean the languages themselves are ‘90% similar.’ Rather, it reflects that
most multilingual embedding spaces share a strong common component
that dominates the angle between vectors [41]. It is important to note,
that cosine similarity is a global measure, meaning it reduces each pair of
vectors to a single number (the cosine of the angle). It does not consider
any nonlinear structure or clusters, and it cannot gain knowledge of any
groupings among multiple points. To be able to consider the structure of
the embeddings, t-SNE was used instead of cosine similarity to visualize
the embeddings in a 2D space.

There are two important insights here:
1. The Gaussians overlap strongly for all languages, indicating that the

1,000 points randomly selected for each language cover a diverse set
of topics. This behavior is consistent across the chosen languages.

2. A more important and relevant insight arises when zooming in on
the mean embeddings and analysing their behavior.

44

5.5. t-SNE Visualization of Mean Embeddings of Different Sample Sizes

5.5 t-SNE Visualization of Mean Embeddings of
Different Sample Sizes

To further investigate the clustering behavior of languages, their mean
embeddings were analyzed. Computing the mean embedding over a large
sample of sentences per language tends to reduce noise from topical differ-
ences and reveal underlying language-specific signals [42]. Prior work on
multilingual models has similarly found that aggregating embeddings at
the language level can highlight linguistic patterns more effectively than
individual embeddings [43]. Accordingly, in this thesis, the mean embed-
ding for each language was used to examine whether languages from the
same family tend to cluster together.

The means of the 10 embeddings (per language) from Fig. 5.4 were
taken to represent each language with a single vector. These were then
plotted in Fig. 5.7, with language families marked to observe whether any
meaningful clusters emerged.

Figure 5.7: Clusters of languages based on their mean embeddings from
10 samples

The same process has been repeated in Fig. 5.8 for 1,000 samples per
language:

45

5. Evaluation and Discussion

Figure 5.8: Clusters of languages based on their mean embeddings from
1,000 samples per language, grouped by language family

Examining the plot reveals that languages from the same families and
subgroups tend to cluster near each other, as seen in Fig. 5.8. This raises
the question of whether the clustering is coincidental or if languages from
the same families consistently cluster together when their mean embed-
dings are analyzed.

Thus far, two sample sizes have been tested:
1. 10 samples per language
2. 1,000 samples per language

In both scenarios, the relationships between languages were consistent,
forming clusters of languages from the same families.

However, only two sample sizes (especially small ones) may not be
sufficient.

Accordingly, this process was extended to larger sample sizes. The
same procedure was repeated for datasets containing:

• 10,000 samples per language
• 20,000 samples per language
• 50,000 samples per language
• 100,000 samples per language
• 200,000 samples per language
The goal was to determine whether clustering behavior based on lan-

guage families remains consistent as the sample size increases.

46

5.5. t-SNE Visualization of Mean Embeddings of Different Sample Sizes

Below are the results for these sample sizes:

10,000 samples per language:

Figure 5.9: t-SNE clusters for 10,000 samples per language

20,000 samples per language:

Figure 5.10: t-SNE clusters for 20,000 samples per language

47

5. Evaluation and Discussion

50,000 samples per language:

Figure 5.11: t-SNE clusters for 50,000 samples per language

100,000 samples per language:

Figure 5.12: t-SNE clusters for 100,000 samples per language

48

5.6. Lessons Learned

200,000 samples per language:

Figure 5.13: t-SNE clusters for 200,000 samples per language

5.6 Lessons Learned
As shown in the figures, the relationships between languages remain con-
sistent across all sample sizes. Clusters of languages from the same family
persist and maintain their expected arrangements. The t-SNE plots sug-
gest that languages from the same family occupy nearby regions in the
embedding space, indicating that the model encodes a partial reflection
of linguistic proximity. Similar findings have been reported, for instance,
[44] showed that word embedding spaces can reconstruct language phylo-
genies.

Therefore, even though the embedding model is based on textual se-
mantics, an entire language can be represented by the mean of its em-
beddings. Comparing these mean vectors enables the assessment of inter-
language relationships.

This hypothesis was tested with the following sample sizes:
1. 10 samples per language
2. 1,000 samples per language
3. 10,000 samples per language
4. 20,000 samples per language
5. 50,000 samples per language
6. 100,000 samples per language
7. 200,000 samples per language
Through this process, it was demonstrated that two types of clusters

can be identified by applying the multilingual embedding model to the
multilingual dataset:

49

5. Evaluation and Discussion

1. Languages from similar families cluster together when analysing the
mean embeddings.

2. Texts on similar topics cluster together (e.g., sports-related data,
regardless of language).

In summary, both effects can be observed, depending on how the em-
beddings are aggregated and analyzed.

If one examines mean embeddings, insights about the languages them-
selves and their families emerge.

If one examines the raw embeddings, insights about the dataset topics
become evident.

50

6Conclusion

In this thesis, a systematic analysis was conducted to uncover the rela-
tions and proximity of multilingual texts in a shared embedding space,
with particular emphasis on linguistic clustering versus semantic cluster-
ing. Using the BAAI bge-m3 embedding model and a vector database
infrastructure, hundreds of thousands of sentences from 24 languages were
processed to form a high-dimensional representation. By employing t-SNE
to reduce the dimensionality for visualization, it became evident that the-
matically similar texts cluster closely regardless of their source language.
At the same time, certain language families still present recognizable clus-
ters when analysing the mean embeddings, supporting the notion that
the embedding model captures some linguistic features alongside topical
similarities.

One key element of the deployment was the inclusion of parallel pro-
cessing on a high-performance computing (HPC) architecture, which ac-
celerated overall computation and allowed larger scope exploration into
the data. One of the main challenges working with massive multilingual
corpora was using the available resources efficiently and effectively with-
out reaching bottlenecks like out-of-memory (OOM) errors. This demon-
strates that High-Performance Computing resources can help make impor-
tant experiments possible, especially when dealing with extremely large
multilingual corpora. When it comes to the clustering and grouping of
languages, the results of this thesis aligns with conventional understand-
ings of language families as established through geographical, historical,
and linguistic research. This consistency suggests the validity of the anal-
ysis and the accuracy of the employed methodology in capturing linguistic
features and relationships between these languages.

The results of the thesis suggest that if topical similarity and analysis
are the primary goals, the raw multilingual embeddings can be used di-
rectly. However, if the focus is on linguistic clustering, to uncover insights
about language relations and distances, it is beneficial to use the mean
embeddings of the languages.

51

References

[1] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. “Machine Learning
Testing: Survey, Landscapes and Horizons”. In: CoRR abs/1906.10742
(2019). arXiv: 1906.10742.

[2] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. “Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer”. In: Journal of
Machine Learning Research 21.140 (2020), pp. 1–67.

[3] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz.
“Machine Learning With Big Data: Challenges and Approaches”. In:
IEEE Access 5 (2017), pp. 7776–7797.

[4] T. A. Chang, C. Arnett, Z. Tu, and B. K. Bergen. When Is Multilin-
guality a Curse? Language Modeling for 250 High- and Low-Resource
Languages. 2023. arXiv: 2311.09205 [cs.CL].

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estima-
tion of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[6] J. Pennington, R. Socher, and C. D. Manning. “GloVe: Global Vec-
tors for Word Representation”. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP).
2014, pp. 1532–1543.

[7] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. “Enriching
Word Vectors with Subword Information”. In: arXiv preprint arXiv:1607.04606
(2016).

[8] J. Allen. Natural Language Understanding. 2nd. Benjamin/Cum-
mings, 1994.

[9] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Prac-
tical Machine Learning Tools and Techniques. 4th. Morgan Kauf-
mann, 2016.

[10] D. Nadeau and S. Sekine. “A survey of named entity recognition and
classification”. In: Lingvisticae Investigationes 30.1 (2007), pp. 3–26.

[11] Z. Harris. “Distributional Structure”. In: Word 10.2-3 (1954), pp. 146–
162.

53

https://arxiv.org/abs/1906.10742
https://arxiv.org/abs/2311.09205

References

[12] H. P. Luhn. “The Automatic Creation of Literature Abstracts”. In:
IBM Journal of Research and Development 2.2 (1958), pp. 159–165.

[13] J. Sinclair. Corpus, Concordance, Collocation. Oxford University
Press, 1991.

[14] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. “Building a
Large Annotated Corpus of English: The Penn Treebank”. In: Com-
putational Linguistics 19.2 (1993), pp. 313–330.

[15] T. Winograd. Language as a Cognitive Process: Syntax. Addison-
Wesley, 1983.

[16] K. Schuster and M. Nakajima. Japanese and Korean Tokenization
Rules. https ://ai .googleblog.com/2012/09/japanese- and- korean-
tokenization-rules.html. Accessed: 2024-01-14. 2012.

[17] M. F. Porter. “An algorithm for suffix stripping”. In: Program 14.3
(1980), pp. 130–137.

[18] A. Mikheev. “Automatic rule induction for unknown-word guessing”.
In: Computational Linguistics 23.3 (1997), pp. 405–423.

[19] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimension-
ality of data with neural networks”. In: Science 313.5786 (2006),
pp. 504–507.

[20] R. P. Adams, H. Wallach, and Z. Ghahramani. “Learning the struc-
ture in latent spaces for language modeling”. In: Advances in Neural
Information Processing Systems. Vol. 24. 2011.

[21] G. Salton and C. Buckley. Term-weighting Approaches in Automatic
Text Retrieval. Addison-Wesley, 1975.

[22] J. Johnson, M. Douze, and H. Jégou. “Billion-scale Similarity Search
with GPUs”. In: IEEE Transactions on Big Data. FAISS: widely used
for vector similarity search. 2019.

[23] J. Ba, V. Mnih, and K. Kavukcuoglu. “Multiple Object Recognition
with Visual Attention”. In: arXiv preprint (2014). arXiv 1412.7755.

[24] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Translate”. In: arXiv preprint
(2015). arXiv 10.48550/ARXIV.1409.0473.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. “Attention Is All You Need”.
In: Google Brain, Google Research, University of Toronto (2017).

[26] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. “Listen, Attend and
Spell”. In: arXiv preprint (2015). arXiv 10.48550/ARXIV.1508.01211.

[27] P. Poupart. “cs480-lecture19-slides”. In: University of Waterloo Canada
(2019).

54

https://ai.googleblog.com/2012/09/japanese-and-korean-tokenization-rules.html
https://ai.googleblog.com/2012/09/japanese-and-korean-tokenization-rules.html

References

[28] G. B. Team. Tensor2Tensor Intro. ONLINE, accessed 20.Feb.2023.
2018.

[29] W. Jiang, X. Li, H. Hu, Q. Lu, and B. Liu. “Multi-Gate Atten-
tion Network for Image Captioning”. In: IEEE Access PP (2021).
10.1109/ACCESS.2021.3067607, pp. 1–1.

[30] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”.
In: Journal of Machine Learning Research 9.9 (2008).

[31] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Sid-
dhant, A. Barua, and C. Raffel. “mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer”. In: arXiv preprint arXiv:2010.11934
(2020).

[32] A. I. for AI. C4 Multilingual Dataset. Accessed: 2024-01-14. 2021.
[33] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu. BGE M3-

Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity
Text Embeddings Through Self-Knowledge Distillation. 2024. arXiv:
2402.03216 [cs.CL].

[34] Ç. Yıldız, N. K. Ravichandran, P. Punia, M. Bethge, and B. Ermis.
“Investigating Continual Pretraining in Large Language Models: In-
sights and Implications”. In: arXiv preprint (2024). arXiv:2402.17400v1.

[35] M. Reid, M. T. Jha, C. Freer, C. Raffel, and G. Melis. “M2D2:
A Massively Multi-Domain Dataset for Better Domain Adaptation
and Transfer Learning”. In: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 2022.

[36] N. Reimers and I. Gurevych. “Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational Lin-
guistics. 2019, pp. 3982–3992.

[37] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith. “Don’t Stop Pretraining: Adapt Lan-
guage Models to Domains and Tasks”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020, pp. 8342–8360.

[38] A. Cossu, D. Belouadi, V. Lomonaco, D. Maltoni, A. Popescu, E.
Bechara, and E. Hadoux. “Continual learning for Natural Language
Processing: A survey”. In: Proceedings of the Neural Information
Processing Systems (NeurIPS) (2022).

[39] X. Ke, L. Sun, W. Zhao, and M. Xu. “Soft-Masking for Continual
Pretraining: Balancing Adaptation and Generalization”. In: Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). 2023.

55

https://arxiv.org/abs/2402.03216

References

[40] H. Face. MTEB Leaderboard. https://huggingface.co/spaces/mteb/
leaderboard. Accessed: 2025-01-10.

[41] J. Mu and P. Viswanath. “All-but-the-Top: Simple and Effective
Postprocessing for Word Representations”. In: International Con-
ference on Learning Representations. 2018.

[42] S. Wu and M. Dredze. “Beto, Bentz, Becas: The Surprising Cross-
Lingual Effectiveness of BERT”. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, Nov. 2019, pp. 833–844.

[43] J. Libovický, A. Fraser, and R. Rosa. “Language Model Analysis in
Cross-Lingual Transfer”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). On-
line: Association for Computational Linguistics, Nov. 2020, pp. 7693–
7707.

[44] O. Draganov and S. Skiena. “The Shape of Word Embeddings:
Quantifying Non-Isometry with Topological Data Analysis”. In: Find-
ings of the Association for Computational Linguistics: EMNLP 2024.
Miami, Florida, USA: Association for Computational Linguistics,
Nov. 2024, pp. 12080–12099.

56

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

Appendix

Appendix A
Specifications of the used HPC clusters:

JUWELS Booster

• Compute Nodes: 936 nodes
• CPU: 2× AMD EPYC Rome 7402, each with 24 cores at 2.8 GHz
• Memory: 512 GB DDR4 at 3200 MHz
• GPUs: 4× NVIDIA A100 per node, each with 40 GB HBM2e
• Network: 4× InfiniBand HDR (Connect-X6)
• Peak Performance: 73 Petaflops

JURECA DC (Phase 2)

• Standard Compute Nodes: 480 nodes
– CPU: 2× AMD EPYC 7742, each with 64 cores at 2.25 GHz
– Memory: 512 (16 x 32) GB DDR4 at 3200 MHz
– Network: InfiniBand HDR100 (NVIDIA Mellanox Connect-

X6)
• Large-Memory Compute Nodes: 96 nodes

– CPU: 2× AMD EPYC 7742, each with 64 cores at 2.25 GHz
– Memory: 1024 (16 x 64) GB DDR4 at 3200 MHz
– Network: InfiniBand HDR100 (NVIDIA Mellanox Connect-

X6)
• Accelerated Compute Nodes: 192 nodes

– CPU: 2× AMD EPYC 7742, each with 64 cores at 2.25 GHz
– Memory: 512 (16 x 32) GB DDR4 at 3200 MHz
– GPUs: 4× NVIDIA A100 per node, each with 40 GB HBM2e
– Network: 2× InfiniBand HDR (NVIDIA Mellanox Connect-

X6)
• Login Nodes: 12 nodes

– CPU: 2× AMD EPYC 7742, each with 64 cores at 2.25 GHz
– Memory: 1024 (16 x 64) GB DDR4 at 3200 MHz
– GPUs: 2× NVIDIA Quadro RTX8000

57

Appendix

– Network: InfiniBand HDR100 (NVIDIA Mellanox Connect-
X6) and 100 Gigabit Ethernet external connection

• Performance: 3.54 Petaflops (CPU) + 14.98 Petaflops (GPU) peak
performance

• Total CPU Cores: 98,304
• Total GPUs: 768
• Network: Mellanox InfiniBand HDR (HDR100/HDR) DragonFly+

network with approximately 15 Tb/s connection to Booster via gate-
way nodes

• Storage Connection: 350 GB/s network connection to JUST for
storage access

Appendix B
Code Snippets:

parallelprocessing.py

import os
import glob
import json
import sys
import uuid
import gc
import random
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from datasets import load_dataset
import chromadb

Suppress tokenizer parallelism warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"

Ensure offline mode for datasets if needed
os.environ['HF_DATASETS_OFFLINE'] = '1'

Set the datasets cache directory to a location with sufficient
space

os.environ['HF_DATASETS_CACHE'] =
'/p/scratch/atmlaml/rahmdel1/datasets_cache'

Base directory where the dataset is stored
data_dir = "/p/scratch/atmlaml/rahmdel1/Dataset_mc4/c4"

Specify the directories to include
subdirs = ["en", "multilingual"]

Languages of interest
languages = [

"en", "de", "nl", "sv", "no", "da", "es", "fr", "it", "pt",

58

Appendix B

"ro", "ru", "pl", "cs", "fa", "ga", "fi", "hu", "zh", "ar",
"iw", "ta", "te", "ja"

]

Define sequence length and initial maximum batch size
model_name = 'BAAI/bge-m3' # Use your desired model
SEQLEN = 512 # Adjusted max sequence length in tokens
MAX_BATCH_SIZE = 2048 # Adjust based on your GPU capacity

Variable to set sample size per language
sample_size_per_language = 200000 # Adjust this value as needed

Checkpoint file path
checkpoint_file = 'checkpoint.json'

Initialize tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name).to('cuda')
model.eval()

Function to get optimal batch size
def get_optimal_batch_size(seqlen, tokenizer, model,

max_batch_size):
batch_size = max_batch_size
while batch_size > 0:

try:
dummy_texts = ['This is a test sentence.'] * batch_size
inputs = tokenizer(

dummy_texts,
return_tensors='pt',
padding='max_length',
truncation=True,
max_length=seqlen,

)
inputs = {key: value.to('cuda') for key, value in

inputs.items()}
with torch.no_grad():

outputs = model(**inputs)
embeddings = mean_pooling(outputs,

inputs['attention_mask'])
del inputs, outputs, embeddings
torch.cuda.empty_cache()
gc.collect()
return batch_size

except RuntimeError as e:
if 'out of memory' in str(e).lower():

print(f"Batch size {batch_size} too large,
reducing...")

batch_size = batch_size // 2
torch.cuda.empty_cache()
gc.collect()

else:
raise e

raise Exception('Could not find suitable batch size.')

59

Appendix

Define mean pooling function
def mean_pooling(model_output, attention_mask):

token_embeddings = model_output.last_hidden_state # First
element contains token embeddings

input_mask_expanded = attention_mask.unsqueeze(-1)
.expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings *

input_mask_expanded, dim=1)
sum_mask = input_mask_expanded.sum(dim=1)
embeddings = sum_embeddings / sum_mask.clamp(min=1e-9)
return embeddings

Function to load checkpoint
def load_checkpoint():

if os.path.exists(checkpoint_file):
with open(checkpoint_file, 'r') as f:

content = f.read()
if content.strip():

checkpoint_data = json.loads(content)
print(f"Loaded checkpoint data.")

else:
checkpoint_data = []
print("Checkpoint file is empty. Starting fresh.")

else:
checkpoint_data = []

return checkpoint_data

Initialize Chroma client with the custom storage directory
client = chromadb.PersistentClient(

path="/p/scratch/atmlaml/rahmdel1/sourcecode/200k/
chroma-embeddings")

Create or get a collection in Chroma
collection_name = "c4_embeddings"
collection = client.get_or_create_collection(name=collection_name)

Load checkpoint data
processed_languages = load_checkpoint()

Function to get the existing sample count for a language
def get_existing_sample_count(lang):

batch_size = 10000 # Adjust as needed
offset = 0
total_ids = 0

while True:
results = collection.get(

ids=None,
where={"lang": lang},
include=[], # Exclude embeddings, metadatas, documents

for efficiency
limit=batch_size,
offset=offset

)
batch_ids = results['ids']

60

Appendix B

num_ids = len(batch_ids)
total_ids += num_ids

if num_ids < batch_size:
break # No more data to fetch

offset += batch_size

return total_ids

Function to process a single language
def process_language(lang):

total_samples_needed = sample_size_per_language

Get existing sample count
existing_sample_count = get_existing_sample_count(lang)
print(f"Existing samples for {lang}: {existing_sample_count}")

If the language has already been processed to the desired
sample size, skip it

if existing_sample_count >= total_samples_needed:
print(f"Language {lang} already has

{existing_sample_count} samples. Skipping.")
Update checkpoint if not already updated
if lang not in processed_languages:

processed_languages.append(lang)
with open(checkpoint_file, 'w') as f:

json.dump(processed_languages, f)
print(f"Updated checkpoint with language: {lang}")

return

print(f"Processing language: {lang}")

Collect all files for the language
data_files = []
for subdir in subdirs:

subdir_path = os.path.join(data_dir, subdir)
if lang == "en" and subdir == "en":

data_files_pattern = f"{subdir_path}/c4-train.*.json.gz"
elif lang != "en" and subdir == "multilingual":

data_files_pattern =
f"{subdir_path}/c4-{lang}.*.json.gz"

else:
continue

data_files.extend(sorted(glob.glob(data_files_pattern)))

if not data_files:
print(f"No files found for language {lang}")
return

Determine optimal batch size
batch_size = get_optimal_batch_size(SEQLEN, tokenizer, model,

max_batch_size=MAX_BATCH_SIZE)
print(f"Using batch size: {batch_size}")

Keep track of total samples collected in this run

61

Appendix

total_new_samples_collected = 0

Keep a list of files already processed to avoid duplicates
processed_files = set()

While we need more samples
while existing_sample_count + total_new_samples_collected <

total_samples_needed:
samples_needed = total_samples_needed -

(existing_sample_count + total_new_samples_collected)
print(f"Samples needed for {lang}: {samples_needed}")

Randomly select files that haven't been processed yet
available_files = list(set(data_files) - processed_files)
if not available_files:

print(f"No more files available for language {lang}.
Cannot reach target sample size.")

break

num_files_to_select = min(5, len(available_files)) #
Adjust the number of files to select as needed

selected_files = random.sample(available_files,
num_files_to_select)

processed_files.update(selected_files)
print(f"Selected {num_files_to_select} new random files

for language {lang}")

Collect sampled examples
sampled_examples = []
total_examples_collected = 0

for file_path in selected_files:
Load dataset from the file in streaming mode
dataset = load_dataset(

'json',
data_files=file_path,
split='train',
streaming=True

)

for example in dataset:
text = example.get('text', '')
if text:

sampled_examples.append(text)
total_examples_collected += 1

if total_examples_collected >= samples_needed:
break

if total_examples_collected >= samples_needed:
break

total_samples = len(sampled_examples)
print(f"Collected {total_samples} new samples for {lang}")

Process sampled examples in batches
for i in tqdm(range(0, total_samples, batch_size),

62

Appendix B

desc=f"Processing {lang}"):
batch_texts = sampled_examples[i:i+batch_size]
inputs = tokenizer(

batch_texts,
return_tensors='pt',
padding='max_length',
truncation=True,
max_length=SEQLEN,

).to('cuda')

with torch.no_grad():
outputs = model(**inputs)
embeddings = mean_pooling(outputs,

inputs['attention_mask'])

Prepare data for ChromaDB
batch_ids = [f"{lang}_{uuid.uuid4()}" for _ in

range(len(batch_texts))]
batch_metadatas = [{'lang': lang} for _ in

range(len(batch_texts))]

Save embeddings to ChromaDB
collection.add(

embeddings=embeddings.cpu().numpy().tolist(),
ids=batch_ids,
metadatas=batch_metadatas,
documents=batch_texts

)

Clear variables
del inputs, outputs, embeddings
torch.cuda.empty_cache()
gc.collect()

total_new_samples_collected += total_samples
print(f"Total new samples collected for {lang}:

{total_new_samples_collected}")

If no new samples were collected, break to avoid
infinite loop

if total_samples == 0:
print(f"No new samples collected for {lang}. Cannot

reach target sample size.")
break

final_sample_count = existing_sample_count +
total_new_samples_collected

print(f"Final sample count for {lang}: {final_sample_count}")

if final_sample_count >= total_samples_needed:
print(f"Reached target sample size for {lang}.")
Update checkpoint
processed_languages.append(lang)
with open(checkpoint_file, 'w') as f:

json.dump(processed_languages, f)

63

Appendix

print(f"Updated checkpoint with language: {lang}")
else:

print(f"Could not reach target sample size for {lang}.
Final sample count: {final_sample_count}")

Optionally update checkpoint to avoid reprocessing
processed_languages.append(lang)
with open(checkpoint_file, 'w') as f:

json.dump(processed_languages, f)
print(f"Updated checkpoint with language: {lang} (partial

data)")

Process each language
for lang in languages:

process_language(lang)

print("All embeddings have been processed and stored in Chroma.")

64

License

This thesis contains others’ intellectual and creative property which has
been cited or marked appropriately. The original creators may have copy-
righted or published their material under a different licence. All residual
work, including figures and the typography layout, are hereby declared
subject to the “Creative Commons Attribution 4.0 International” licence.

https://creativecommons.org/licenses/by/4.0/legalcode

65

https://creativecommons.org/licenses/by/4.0/legalcode

	Abstract
	Acknowledgments
	Contents
	Abbreviations
	Introduction
	Motivation
	Thesis Goal
	Thesis Contributions
	Multilingual Embedding and Distribution Process
	Vector Storage and Efficient Retrieval
	Semantic Similarity Measurement
	Dimensionality Reduction and Visualization

	Outline

	Background and Related Work
	Natural Language Processing (NLP)
	Text Mining
	Text Preprocessing
	Tokenization

	Autoencoders and Latent Space
	Latent Space
	Embeddings
	Vector Databases

	Attention Mechanism and Transformers
	Attention in Natural Language Processing
	Computing Attention
	Self-Attention
	The Transformer

	Visualization and Metrics of Similarity
	t-SNE
	Cosine Similarity

	The Dataset
	C4
	mC4
	AllenAI mC4

	BAAI bge-m3 Embedding Model
	Related Work
	Exploring Cross-Domain Semantic Similarity through Embedding Models
	Continual Pretraining and Domain Adaptation in LLMs
	Relation to This Work
	Methodological Similarities
	Brief Summary

	Conceptual Approach
	Methodological Framework
	The Dataset
	The Embedding Model
	Storing the Embeddings - The Vector Database
	Similarity Measurement
	Dimensionality Reduction and Visualization
	Mathematical Formulation of t-SNE

	Summary of the Conceptual Approach

	Implementation
	Downloading the Dataset
	Dataset Structure
	English Dataset
	Multilingual Dataset

	Generating Embeddings from the Dataset
	Imports and Environment Setup
	Model Initialization
	Dynamic Batch Size Determination and Mean Pooling
	Checkpointing and ChromaDB Initialization
	Processing the Dataset and Running the Embedding Model

	Evaluation and Discussion
	Required Scripts
	Research Question
	A Controlled Dataset for Understanding t-SNE Visualizations
	t-SNE Representation of Embeddings using Gaussian Fitting
	t-SNE Visualization of Mean Embeddings of Different Sample Sizes
	Lessons Learned

	Conclusion
	References
	Appendix
	Appendix A
	Appendix B

	License

