001041551 001__ 1041551
001041551 005__ 20250512080603.0
001041551 037__ $$aFZJ-2025-02308
001041551 1001_ $$0P:(DE-Juel1)177811$$aMartinez, Jose$$b0$$ufzj
001041551 245__ $$aOne-dimensional topological superconductivity in a van der Waals heterostructure
001041551 260__ $$c2023
001041551 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745390258_25032
001041551 3367_ $$2ORCID$$aWORKING_PAPER
001041551 3367_ $$028$$2EndNote$$aElectronic Article
001041551 3367_ $$2DRIVER$$apreprint
001041551 3367_ $$2BibTeX$$aARTICLE
001041551 3367_ $$2DataCite$$aOutput Types/Working Paper
001041551 520__ $$aOne-dimensional (1D) topological superconductivity is a state of matter that is not found in nature. However, it can be realised, for example, by inducing superconductivity into the quantum spin Hall edge state of a two-dimensional topological insulator. Because topological superconductors are proposed to host Majorana zero modes, they have been suggested as a platform for topological quantum computing. Yet, conclusive proof of 1D topological superconductivity has remained elusive. Here, we employ low-temperature scanning tunnelling microscopy to show 1D topological superconductivity in a van der Waals heterostructure by directly probing its superconducting properties, instead of relying on the observation of Majorana zero modes at its boundary. We realise this by placing the two-dimensional topological insulator monolayer WTe2 on the superconductor NbSe2. We find that the superconducting topological edge state is robust against magnetic fields, a hallmark of its triplet pairing. Its topological protection is underpinned by a lateral self-proximity effect, which is resilient against disorder in the monolayer edge. By creating this exotic state in a van der Waals heterostructure, we provide an adaptable platform for the future realization of Majorana bound states. Finally, our results more generally demonstrate the power of Abrikosov vortices as effective experimental probes for superconductivity in nanostructures.
001041551 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041551 588__ $$aDataset connected to DataCite
001041551 7001_ $$0P:(DE-Juel1)187583$$aWichmann, Tobias$$b1$$ufzj
001041551 7001_ $$0P:(DE-Juel1)188290$$aJin, Keda$$b2$$ufzj
001041551 7001_ $$0P:(DE-HGF)0$$aSamuely, Tomas$$b3
001041551 7001_ $$0P:(DE-HGF)0$$aLyu, Zhongkui$$b4
001041551 7001_ $$0P:(DE-HGF)0$$aYan, Jiaqiang$$b5
001041551 7001_ $$0P:(DE-HGF)0$$aOnufriienko, Oleksander$$b6
001041551 7001_ $$0P:(DE-HGF)0$$aSzabó, Pavol$$b7
001041551 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b8$$ufzj
001041551 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b9$$ufzj
001041551 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b10$$eCorresponding author$$ufzj
001041551 8564_ $$uhttps://arxiv.org/abs/2304.08142
001041551 909CO $$ooai:juser.fz-juelich.de:1041551$$pVDB
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177811$$aForschungszentrum Jülich$$b0$$kFZJ
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187583$$aForschungszentrum Jülich$$b1$$kFZJ
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188290$$aForschungszentrum Jülich$$b2$$kFZJ
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b9$$kFZJ
001041551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b10$$kFZJ
001041551 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041551 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041551 980__ $$apreprint
001041551 980__ $$aVDB
001041551 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041551 980__ $$aUNRESTRICTED