001     1041551
005     20250512080603.0
037 _ _ |a FZJ-2025-02308
100 1 _ |0 P:(DE-Juel1)177811
|a Martinez, Jose
|b 0
|u fzj
245 _ _ |a One-dimensional topological superconductivity in a van der Waals heterostructure
260 _ _ |c 2023
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1745390258_25032
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a One-dimensional (1D) topological superconductivity is a state of matter that is not found in nature. However, it can be realised, for example, by inducing superconductivity into the quantum spin Hall edge state of a two-dimensional topological insulator. Because topological superconductors are proposed to host Majorana zero modes, they have been suggested as a platform for topological quantum computing. Yet, conclusive proof of 1D topological superconductivity has remained elusive. Here, we employ low-temperature scanning tunnelling microscopy to show 1D topological superconductivity in a van der Waals heterostructure by directly probing its superconducting properties, instead of relying on the observation of Majorana zero modes at its boundary. We realise this by placing the two-dimensional topological insulator monolayer WTe2 on the superconductor NbSe2. We find that the superconducting topological edge state is robust against magnetic fields, a hallmark of its triplet pairing. Its topological protection is underpinned by a lateral self-proximity effect, which is resilient against disorder in the monolayer edge. By creating this exotic state in a van der Waals heterostructure, we provide an adaptable platform for the future realization of Majorana bound states. Finally, our results more generally demonstrate the power of Abrikosov vortices as effective experimental probes for superconductivity in nanostructures.
536 _ _ |0 G:(DE-HGF)POF4-5213
|a 5213 - Quantum Nanoscience (POF4-521)
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |0 P:(DE-Juel1)187583
|a Wichmann, Tobias
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)188290
|a Jin, Keda
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Samuely, Tomas
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Lyu, Zhongkui
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Yan, Jiaqiang
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Onufriienko, Oleksander
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Szabó, Pavol
|b 7
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, Frank Stefan
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)174438
|a Ternes, Markus
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)162163
|a Lüpke, Felix
|b 10
|e Corresponding author
|u fzj
856 4 _ |u https://arxiv.org/abs/2304.08142
909 C O |o oai:juser.fz-juelich.de:1041551
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177811
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)187583
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)188290
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)174438
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162163
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-521
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5213
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Quantum Materials
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21