001041553 001__ 1041553
001041553 005__ 20250423202217.0
001041553 0247_ $$2doi$$a10.48550/ARXIV.2301.11762
001041553 037__ $$aFZJ-2025-02310
001041553 1001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b0$$eCorresponding author$$ufzj
001041553 245__ $$aElectron spin secluded inside a bottom-up assembled standing metal-molecule nanostructure
001041553 260__ $$barXiv$$c2023
001041553 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745388632_25032
001041553 3367_ $$2ORCID$$aWORKING_PAPER
001041553 3367_ $$028$$2EndNote$$aElectronic Article
001041553 3367_ $$2DRIVER$$apreprint
001041553 3367_ $$2BibTeX$$aARTICLE
001041553 3367_ $$2DataCite$$aOutput Types/Working Paper
001041553 520__ $$aArtificial nanostructures, fabricated by placing building blocks such as atoms or molecules in well-defined positions, are a powerful platform in which quantum effects can be studied and exploited on the atomic scale. Here, we report a strategy to significantly reduce the electron-electron coupling between a large planar aromatic molecule and the underlying metallic substrate. To this end, we use the manipulation capabilities of a scanning tunneling microscope (STM) and lift the molecule into a metastable upright geometry on a pedestal of two metal atoms. Measurements at millikelvin temperatures and magnetic fields reveal that the bottom-up assembled standing metal-molecule nanostructure has an $S = \frac{1}{2}$ spin which is screened by the substrate electrons, resulting in a Kondo temperature of only $291 \pm 13$ mK. We extract the Landé $g$-factor of the molecule and the exchange coupling $Jρ$ to the substrate by modeling the differential conductance spectra using a third-order perturbation theory in the weak coupling and high-field regimes. Furthermore, we show that the interaction between the STM tip and the molecule can tune the exchange coupling to the substrate, which suggests that the bond between the standing metal-molecule nanostructure and the surface is mechanically soft.
001041553 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041553 588__ $$aDataset connected to DataCite
001041553 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041553 650_7 $$2Other$$aStrongly Correlated Electrons (cond-mat.str-el)
001041553 650_7 $$2Other$$aFOS: Physical sciences
001041553 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b1$$ufzj
001041553 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b2$$ufzj
001041553 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b3$$ufzj
001041553 773__ $$a10.48550/ARXIV.2301.11762
001041553 909CO $$ooai:juser.fz-juelich.de:1041553$$pVDB
001041553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b0$$kFZJ
001041553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b1$$kFZJ
001041553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b2$$kFZJ
001041553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
001041553 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041553 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041553 980__ $$apreprint
001041553 980__ $$aVDB
001041553 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041553 980__ $$aUNRESTRICTED