001     1041553
005     20250423202217.0
024 7 _ |a 10.48550/ARXIV.2301.11762
|2 doi
037 _ _ |a FZJ-2025-02310
100 1 _ |a Esat, Taner
|0 P:(DE-Juel1)180950
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Electron spin secluded inside a bottom-up assembled standing metal-molecule nanostructure
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745388632_25032
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Artificial nanostructures, fabricated by placing building blocks such as atoms or molecules in well-defined positions, are a powerful platform in which quantum effects can be studied and exploited on the atomic scale. Here, we report a strategy to significantly reduce the electron-electron coupling between a large planar aromatic molecule and the underlying metallic substrate. To this end, we use the manipulation capabilities of a scanning tunneling microscope (STM) and lift the molecule into a metastable upright geometry on a pedestal of two metal atoms. Measurements at millikelvin temperatures and magnetic fields reveal that the bottom-up assembled standing metal-molecule nanostructure has an $S = \frac{1}{2}$ spin which is screened by the substrate electrons, resulting in a Kondo temperature of only $291 \pm 13$ mK. We extract the Landé $g$-factor of the molecule and the exchange coupling $Jρ$ to the substrate by modeling the differential conductance spectra using a third-order perturbation theory in the weak coupling and high-field regimes. Furthermore, we show that the interaction between the STM tip and the molecule can tune the exchange coupling to the substrate, which suggests that the bond between the standing metal-molecule nanostructure and the surface is mechanically soft.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a Strongly Correlated Electrons (cond-mat.str-el)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Ternes, Markus
|0 P:(DE-Juel1)174438
|b 1
|u fzj
700 1 _ |a Temirov, Ruslan
|0 P:(DE-Juel1)128792
|b 2
|u fzj
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-Juel1)128791
|b 3
|u fzj
773 _ _ |a 10.48550/ARXIV.2301.11762
909 C O |o oai:juser.fz-juelich.de:1041553
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174438
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21