001041554 001__ 1041554
001041554 005__ 20250423202217.0
001041554 0247_ $$2doi$$a10.48550/ARXIV.2210.11908
001041554 037__ $$aFZJ-2025-02311
001041554 1001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b0$$eFirst author$$ufzj
001041554 245__ $$aHow cold is the junction of a millikelvin scanning tunnelling microscope?
001041554 260__ $$barXiv$$c2022
001041554 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745390272_25792
001041554 3367_ $$2ORCID$$aWORKING_PAPER
001041554 3367_ $$028$$2EndNote$$aElectronic Article
001041554 3367_ $$2DRIVER$$apreprint
001041554 3367_ $$2BibTeX$$aARTICLE
001041554 3367_ $$2DataCite$$aOutput Types/Working Paper
001041554 520__ $$aWe employ a scanning tunnelling microscope (STM) cooled to millikelvin temperatures by an adiabatic demagnetization refrigerator (ADR) to perform scanning tunnelling spectroscopy (STS) on an atomically clean surface of Al(100) in a superconducting state using normal-metal and superconducting STM tips. Varying the ADR temperatures between 30 mK and 1.2 K, we show that the temperature of the STM junction $T$ is decoupled from the temperature of the surrounding environment $T_{\mathrm{env}}$. Simulating the STS data with the $P(E)$ theory, we determine that $T_{\mathrm{env}} \approx 1.5$ K, while the fitting of the superconducting gap spectrum yields the lowest $T=77$ mK.
001041554 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041554 588__ $$aDataset connected to DataCite
001041554 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041554 650_7 $$2Other$$aFOS: Physical sciences
001041554 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b1
001041554 7001_ $$0P:(DE-HGF)0$$aMustafayev, Farhad$$b2
001041554 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b3$$ufzj
001041554 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b4$$ufzj
001041554 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b5$$eCorresponding author$$ufzj
001041554 773__ $$a10.48550/ARXIV.2210.11908
001041554 8564_ $$uhttps://arxiv.org/abs/2210.11908
001041554 909CO $$ooai:juser.fz-juelich.de:1041554$$pVDB
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b0$$kFZJ
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b1$$kFZJ
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b3$$kFZJ
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
001041554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b5$$kFZJ
001041554 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041554 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041554 980__ $$apreprint
001041554 980__ $$aVDB
001041554 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041554 980__ $$aUNRESTRICTED