Home > Publications database > How cold is the junction of a millikelvin scanning tunnelling microscope? > print |
001 | 1041554 | ||
005 | 20250423202217.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2210.11908 |2 doi |
037 | _ | _ | |a FZJ-2025-02311 |
100 | 1 | _ | |a Esat, Taner |0 P:(DE-Juel1)180950 |b 0 |e First author |u fzj |
245 | _ | _ | |a How cold is the junction of a millikelvin scanning tunnelling microscope? |
260 | _ | _ | |c 2022 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1745390272_25792 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a We employ a scanning tunnelling microscope (STM) cooled to millikelvin temperatures by an adiabatic demagnetization refrigerator (ADR) to perform scanning tunnelling spectroscopy (STS) on an atomically clean surface of Al(100) in a superconducting state using normal-metal and superconducting STM tips. Varying the ADR temperatures between 30 mK and 1.2 K, we show that the temperature of the STM junction $T$ is decoupled from the temperature of the surrounding environment $T_{\mathrm{env}}$. Simulating the STS data with the $P(E)$ theory, we determine that $T_{\mathrm{env}} \approx 1.5$ K, while the fitting of the superconducting gap spectrum yields the lowest $T=77$ mK. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall) |2 Other |
650 | _ | 7 | |a FOS: Physical sciences |2 Other |
700 | 1 | _ | |a Yang, Xiaosheng |0 P:(DE-Juel1)165181 |b 1 |
700 | 1 | _ | |a Mustafayev, Farhad |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Soltner, Helmut |0 P:(DE-Juel1)133754 |b 3 |u fzj |
700 | 1 | _ | |a Tautz, Frank Stefan |0 P:(DE-Juel1)128791 |b 4 |u fzj |
700 | 1 | _ | |a Temirov, Ruslan |0 P:(DE-Juel1)128792 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.48550/ARXIV.2210.11908 |
856 | 4 | _ | |u https://arxiv.org/abs/2210.11908 |
909 | C | O | |o oai:juser.fz-juelich.de:1041554 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180950 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165181 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)133754 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128791 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128792 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|