001     1041554
005     20250423202217.0
024 7 _ |a 10.48550/ARXIV.2210.11908
|2 doi
037 _ _ |a FZJ-2025-02311
100 1 _ |a Esat, Taner
|0 P:(DE-Juel1)180950
|b 0
|e First author
|u fzj
245 _ _ |a How cold is the junction of a millikelvin scanning tunnelling microscope?
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745390272_25792
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We employ a scanning tunnelling microscope (STM) cooled to millikelvin temperatures by an adiabatic demagnetization refrigerator (ADR) to perform scanning tunnelling spectroscopy (STS) on an atomically clean surface of Al(100) in a superconducting state using normal-metal and superconducting STM tips. Varying the ADR temperatures between 30 mK and 1.2 K, we show that the temperature of the STM junction $T$ is decoupled from the temperature of the surrounding environment $T_{\mathrm{env}}$. Simulating the STS data with the $P(E)$ theory, we determine that $T_{\mathrm{env}} \approx 1.5$ K, while the fitting of the superconducting gap spectrum yields the lowest $T=77$ mK.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 1
700 1 _ |a Mustafayev, Farhad
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Soltner, Helmut
|0 P:(DE-Juel1)133754
|b 3
|u fzj
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-Juel1)128791
|b 4
|u fzj
700 1 _ |a Temirov, Ruslan
|0 P:(DE-Juel1)128792
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2210.11908
856 4 _ |u https://arxiv.org/abs/2210.11908
909 C O |o oai:juser.fz-juelich.de:1041554
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21