001041555 001__ 1041555
001041555 005__ 20250423202218.0
001041555 0247_ $$2doi$$a10.48550/ARXIV.2201.11430
001041555 037__ $$aFZJ-2025-02312
001041555 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0$$eCorresponding author
001041555 245__ $$aNanoscale tip positioning with a multi-tip scanning tunneling microscope using topography images
001041555 260__ $$barXiv$$c2022
001041555 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745388652_24867
001041555 3367_ $$2ORCID$$aWORKING_PAPER
001041555 3367_ $$028$$2EndNote$$aElectronic Article
001041555 3367_ $$2DRIVER$$apreprint
001041555 3367_ $$2BibTeX$$aARTICLE
001041555 3367_ $$2DataCite$$aOutput Types/Working Paper
001041555 520__ $$aMulti-tip scanning tunneling microscopy (STM) is a powerful method to perform charge transport measurements at the nanoscale. With four STM tips positioned on the surface of a sample, four-point resistance measurements can be performed in dedicated geometric configurations. Here, we present an alternative to the most often used scanning electron microscope (SEM) imaging to infer the corresponding tip positions. After initial coarse positioning monitored by an optical microscope, STM scanning itself is used to determine the inter-tip distances. A large STM overview scan serves as a reference map. Recognition of the same topographic features in the reference map and in small scale images with the individual tips allows to identify the tip positions with an accuracy of about 20 nm for a typical tip spacing of ~1 $μ$m. In order to correct for effects like the non-linearity of the deflection, creep and hysteresis of the piezo-electric elements of the STM, a careful calibration has to be performed.
001041555 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041555 588__ $$aDataset connected to DataCite
001041555 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041555 650_7 $$2Other$$aFOS: Physical sciences
001041555 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b1$$ufzj
001041555 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b2$$eCorresponding author$$ufzj
001041555 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b3$$ufzj
001041555 773__ $$a10.48550/ARXIV.2201.11430
001041555 909CO $$ooai:juser.fz-juelich.de:1041555$$pVDB
001041555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
001041555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b1$$kFZJ
001041555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b2$$kFZJ
001041555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
001041555 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041555 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041555 980__ $$apreprint
001041555 980__ $$aVDB
001041555 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041555 980__ $$aUNRESTRICTED