001041556 001__ 1041556
001041556 005__ 20250423202218.0
001041556 0247_ $$2doi$$a10.48550/ARXIV.2209.11516
001041556 037__ $$aFZJ-2025-02313
001041556 1001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b0$$eFirst author$$ufzj
001041556 245__ $$aBenchmarking theoretical electronic structure methods with photoemission orbital tomography
001041556 260__ $$barXiv$$c2022
001041556 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745390289_23740
001041556 3367_ $$2ORCID$$aWORKING_PAPER
001041556 3367_ $$028$$2EndNote$$aElectronic Article
001041556 3367_ $$2DRIVER$$apreprint
001041556 3367_ $$2BibTeX$$aARTICLE
001041556 3367_ $$2DataCite$$aOutput Types/Working Paper
001041556 520__ $$aIn the past decade, photoemission orbital tomography (POT) has evolved into a powerful tool to investigate the electronic structure of organic molecules adsorbed on (metallic) surfaces. By measuring the angular distribution of photoelectrons as a function of binding energy and making use of the momentum-space signature of molecular orbitals, POT leads to an orbital-resolved picture of the electronic density of states at the organic/metal interface. In this combined experimental and theoretical work, we apply POT to the prototypical organic $π$-conjugated molecule bisanthene (C$_{28}$H$_{14}$) which forms a highly oriented monolayer on a Cu(110) surface. Experimentally, we identify an unprecedented number of 13 $π$ and 12 $σ$ orbitals of bisanthene and measure their respective binding energies and spectral lineshapes at the bisanthene/Cu(110) interface. Theoretically, we perform density functional calculations for this interface employing four widely used exchange-correlation functionals from the families of the generalized gradient approximations as well as global and range-separated hybrid functionals. By analyzing the electronic structure in terms of orbital-projected density of states, we arrive at a detailed orbital-by-orbital assessment of theory vs. experiment. This allows us to benchmark the performance of the investigated functionals with regards to their capability of accounting for the orbital energy alignment at organic/metal interfaces.
001041556 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041556 588__ $$aDataset connected to DataCite
001041556 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041556 650_7 $$2Other$$aChemical Physics (physics.chem-ph)
001041556 650_7 $$2Other$$aFOS: Physical sciences
001041556 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b1
001041556 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b2
001041556 7001_ $$0P:(DE-HGF)0$$aBrandstetter, Dominik$$b3
001041556 7001_ $$0P:(DE-HGF)0$$aKirschner, Hans$$b4
001041556 7001_ $$0P:(DE-HGF)0$$aGottwald, Alexander$$b5
001041556 7001_ $$0P:(DE-HGF)0$$aRichter, Mathias$$b6
001041556 7001_ $$0P:(DE-HGF)0$$aKoller, Georg$$b7
001041556 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b8
001041556 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b9
001041556 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b10
001041556 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b11$$ufzj
001041556 7001_ $$0P:(DE-HGF)0$$aPuschnig, Peter$$b12$$eCorresponding author
001041556 773__ $$a10.48550/ARXIV.2209.11516
001041556 8564_ $$uhttps://arxiv.org/abs/2209.11516
001041556 909CO $$ooai:juser.fz-juelich.de:1041556$$pVDB
001041556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b0$$kFZJ
001041556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b1$$kFZJ
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
001041556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
001041556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b10$$kFZJ
001041556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b11$$kFZJ
001041556 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b12$$kExtern
001041556 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041556 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041556 980__ $$apreprint
001041556 980__ $$aVDB
001041556 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041556 980__ $$aUNRESTRICTED