001041557 001__ 1041557
001041557 005__ 20250423202218.0
001041557 0247_ $$2doi$$a10.48550/ARXIV.2208.10377
001041557 037__ $$aFZJ-2025-02314
001041557 1001_ $$0P:(DE-Juel1)181014$$aArabi, Soroush$$b0
001041557 245__ $$aPortrait of locally driven quantum phase transition cascades in a molecular monolayer
001041557 260__ $$barXiv$$c2022
001041557 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745392994_24520
001041557 3367_ $$2ORCID$$aWORKING_PAPER
001041557 3367_ $$028$$2EndNote$$aElectronic Article
001041557 3367_ $$2DRIVER$$apreprint
001041557 3367_ $$2BibTeX$$aARTICLE
001041557 3367_ $$2DataCite$$aOutput Types/Working Paper
001041557 520__ $$aStrongly interacting electrons in layered materials give rise to a plethora of emergent phenomena, such as unconventional superconductivity. heavy fermions, and spin textures with non-trivial topology. Similar effects can also be observed in bulk materials, but the advantage of two dimensional (2D) systems is the combination of local accessibility by microscopic techniques and tuneability. In stacks of 2D materials, for example, the twist angle can be employed to tune their properties. However, while material choice and twist angle are global parameters, the full complexity and potential of such correlated 2D electronic lattices will only reveal itself when tuning their parameters becomes possible on the level of individual lattice sites. Here, we discover a lattice of strongly correlated electrons in a perfectly ordered 2D supramolecular network by driving this system through a cascade of quantum phase transitions using a movable atomically sharp electrostatic gate. As the gate field is increased, the molecular building blocks change from a Kondo-screened to a paramagnetic phase one-by-one, enabling us to reconstruct their complex interactions in detail. We anticipate that the supramolecular nature of the system will in future allow to engineer quantum correlations in arbitrary patterned structures.
001041557 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041557 588__ $$aDataset connected to DataCite
001041557 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041557 650_7 $$2Other$$aStrongly Correlated Electrons (cond-mat.str-el)
001041557 650_7 $$2Other$$aFOS: Physical sciences
001041557 7001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b1$$ufzj
001041557 7001_ $$0P:(DE-Juel1)166225$$aSabitova, Aizhan$$b2
001041557 7001_ $$0P:(DE-HGF)0$$aWang, Yuqi$$b3
001041557 7001_ $$0P:(DE-HGF)0$$aLee, Hovan$$b4
001041557 7001_ $$0P:(DE-HGF)0$$aWeber, Cedric$$b5
001041557 7001_ $$0P:(DE-HGF)0$$aKern, Klaus$$b6
001041557 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b7$$ufzj
001041557 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b8$$eCorresponding author$$ufzj
001041557 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b9$$eCorresponding author$$ufzj
001041557 773__ $$a10.48550/ARXIV.2208.10377
001041557 8564_ $$uhttps://arxiv.org/abs/2208.10377
001041557 909CO $$ooai:juser.fz-juelich.de:1041557$$pVDB
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181014$$aForschungszentrum Jülich$$b0$$kFZJ
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b1$$kFZJ
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166225$$aForschungszentrum Jülich$$b2$$kFZJ
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001041557 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001041557 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
001041557 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b7$$kFZJ
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b8$$kFZJ
001041557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b9$$kFZJ
001041557 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041557 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041557 980__ $$apreprint
001041557 980__ $$aVDB
001041557 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041557 980__ $$aUNRESTRICTED