001041558 001__ 1041558
001041558 005__ 20250423202218.0
001041558 0247_ $$2doi$$a10.48550/ARXIV.2111.08926
001041558 037__ $$aFZJ-2025-02315
001041558 1001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b0
001041558 245__ $$aVertical structure of Sb-intercalated quasifreestanding graphene on SiC(0001)
001041558 260__ $$barXiv$$c2021
001041558 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745388671_25792
001041558 3367_ $$2ORCID$$aWORKING_PAPER
001041558 3367_ $$028$$2EndNote$$aElectronic Article
001041558 3367_ $$2DRIVER$$apreprint
001041558 3367_ $$2BibTeX$$aARTICLE
001041558 3367_ $$2DataCite$$aOutput Types/Working Paper
001041558 520__ $$aUsing the normal incidence x-ray standing wave technique as well as low energy electron microscopy we have investigated the structure of quasi-freestanding monolayer graphene (QFMLG) obtained by intercalation of antimony under the $\left(6\sqrt{3}\times6\sqrt{3}\right)R30^\circ$ reconstructed graphitized 6H-SiC(0001) surface, also known as zeroth-layer graphene. We found that Sb intercalation decouples the QFMLG well from the substrate. The distance from the QFMLG to the Sb layer almost equals the expected van der Waals bonding distance of C and Sb. The Sb intercalation layer itself is mono-atomic, flat, and located much closer to the substrate, at almost the distance of a covalent Sb-Si bond length. All data is consistent with Sb located on top of the uppermost Si atoms of the SiC bulk.
001041558 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041558 588__ $$aDataset connected to DataCite
001041558 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041558 650_7 $$2Other$$aFOS: Physical sciences
001041558 7001_ $$0P:(DE-HGF)0$$aWolff, Susanne$$b1
001041558 7001_ $$0P:(DE-HGF)0$$aSchädlich, Philip$$b2
001041558 7001_ $$0P:(DE-Juel1)180912$$aHutter, Mark$$b3$$ufzj
001041558 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b4
001041558 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b5
001041558 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b6$$ufzj
001041558 7001_ $$0P:(DE-HGF)0$$aSeyller, Thomas$$b7
001041558 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b8$$ufzj
001041558 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b9$$eCorresponding author
001041558 773__ $$a10.48550/ARXIV.2111.08926
001041558 909CO $$ooai:juser.fz-juelich.de:1041558$$pVDB
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173990$$aForschungszentrum Jülich$$b0$$kFZJ
001041558 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001041558 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180912$$aForschungszentrum Jülich$$b3$$kFZJ
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001041558 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b6$$kFZJ
001041558 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b8$$kFZJ
001041558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
001041558 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041558 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041558 980__ $$apreprint
001041558 980__ $$aVDB
001041558 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041558 980__ $$aUNRESTRICTED