001041560 001__ 1041560 001041560 005__ 20250512115733.0 001041560 0247_ $$2doi$$a10.5194/acp-25-4403-2025 001041560 0247_ $$2ISSN$$a1680-7316 001041560 0247_ $$2ISSN$$a1680-7324 001041560 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02317 001041560 0247_ $$2WOS$$aWOS:001472736600001 001041560 037__ $$aFZJ-2025-02317 001041560 041__ $$aEnglish 001041560 082__ $$a550 001041560 1001_ $$0P:(DE-Juel1)187051$$aLiu, Mingzhao$$b0$$eCorresponding author 001041560 245__ $$aTechnical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption 001041560 260__ $$aKatlenburg-Lindau$$bEGU$$c2025 001041560 3367_ $$2DRIVER$$aarticle 001041560 3367_ $$2DataCite$$aOutput Types/Journal article 001041560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745398814_17345 001041560 3367_ $$2BibTeX$$aARTICLE 001041560 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001041560 3367_ $$00$$2EndNote$$aJournal Article 001041560 520__ $$aLagrangian transport models are important tools to study the sources, spread, and lifetime of air pollutants. In order to simulate the transport of reactive atmospheric pollutants, the implementation of efficient chemistry and mixing schemes is necessary to properly represent the lifetime of chemical species. Based on a case study simulating the long-range transport of volcanic sulfur dioxide (SO2) for the 2019 Raikoke eruption, this study compares two chemistry schemes implemented in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model. The explicit scheme represents first-order and pseudo-first-order loss processes of SO2 based on prescribed reaction rates and climatological oxidant fields, i.e., the hydroxyl radical in the gas phase and hydrogen peroxide in the aqueous phase. Furthermore, an implicit scheme with a reduced chemistry mechanism for volcanic SO2 decomposition has been implemented, targeting the upper-troposphere–lower-stratosphere (UT–LS) region. Considering nonlinear effects of the volcanic SO2 chemistry in the UT–LS region, we found that the implicit solution yields a better representation of the volcanic SO2 lifetime, while the first-order explicit solution has better computational efficiency. By analyzing the dependence between the oxidants and SO2 concentrations, correction formulas are derived to adjust the oxidant fields used in the explicit solution, leading to a good trade-off between computational efficiency and accuracy. We consider this work to be an important step forward to support future research on emission source reconstruction involving nonlinear chemical processes. 001041560 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001041560 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1 001041560 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001041560 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b1 001041560 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b2 001041560 7001_ $$0P:(DE-Juel1)180878$$aCai, Zhongyin$$b3 001041560 7001_ $$0P:(DE-Juel1)129121$$aGrießbach, Sabine$$b4 001041560 7001_ $$0P:(DE-Juel1)165650$$aHeng, Yi$$b5 001041560 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-25-4403-2025$$gVol. 25, no. 8, p. 4403 - 4418$$n8$$p4403 - 4418$$tAtmospheric chemistry and physics$$v25$$x1680-7316$$y2025 001041560 8564_ $$uhttps://juser.fz-juelich.de/record/1041560/files/acp-25-4403-2025.pdf$$yOpenAccess 001041560 8767_ $$8Helmholtz-PUC-2025-51$$92025-04-24$$a1200213455$$d2025-04-25$$eAPC$$jZahlung erfolgt$$zOZG-RE Portal 001041560 909CO $$ooai:juser.fz-juelich.de:1041560$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001041560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187051$$aForschungszentrum Jülich$$b0$$kFZJ 001041560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ 001041560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b2$$kFZJ 001041560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b4$$kFZJ 001041560 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001041560 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1 001041560 9141_ $$y2025 001041560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21 001041560 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001041560 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z 001041560 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z 001041560 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001041560 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z 001041560 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21 001041560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21 001041560 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001041560 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001041560 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001041560 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 001041560 920__ $$lyes 001041560 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001041560 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x1 001041560 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x2 001041560 9801_ $$aFullTexts 001041560 980__ $$ajournal 001041560 980__ $$aVDB 001041560 980__ $$aUNRESTRICTED 001041560 980__ $$aI:(DE-Juel1)JSC-20090406 001041560 980__ $$aI:(DE-Juel1)ICE-4-20101013 001041560 980__ $$aI:(DE-Juel1)CASA-20230315 001041560 980__ $$aAPC