001041580 001__ 1041580
001041580 005__ 20250423202218.0
001041580 0247_ $$2doi$$a10.48550/ARXIV.2203.00985
001041580 037__ $$aFZJ-2025-02319
001041580 1001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b0
001041580 245__ $$aBoron nitride on SiC(0001)
001041580 260__ $$barXiv$$c2022
001041580 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745392945_24522
001041580 3367_ $$2ORCID$$aWORKING_PAPER
001041580 3367_ $$028$$2EndNote$$aElectronic Article
001041580 3367_ $$2DRIVER$$apreprint
001041580 3367_ $$2BibTeX$$aARTICLE
001041580 3367_ $$2DataCite$$aOutput Types/Working Paper
001041580 520__ $$aIn the field of van der Waals heterostructures, the twist angle between stacked two-dimensional (2D) layers has been identified to be of utmost importance for the properties of the heterostructures. In this context, we previously reported the growth of a single layer of unconventionally oriented epitaxial graphene that forms in a surfactant atmosphere [F. C. Bocquet, et al., Phys. Rev. Lett. 125, 106102 (2020)]. The resulting G-R0$^\circ$ layer is aligned with the SiC lattice, and hence represents an important milestone towards high quality twisted bilayer graphene (tBLG), a frequently investigated model system in this field. Here, we focus on the surface structures obtained in the same surfactant atmosphere, but at lower preparation temperatures at which a boron nitride template layer forms on SiC(0001). In a comprehensive study based on complementary experimental and theoretical techniques, we find -- in contrast to the literature -- that this template layer is a hexagonal B$_x$N$_y$ layer, but not high-quality hBN. It is aligned with the SiC lattice and gradually replaced by low-quality graphene in the 0$^\circ$ orientation of the B$_x$N$_y$ template layer upon annealing.
001041580 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041580 588__ $$aDataset connected to DataCite
001041580 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041580 650_7 $$2Other$$aFOS: Physical sciences
001041580 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b1
001041580 7001_ $$0P:(DE-HGF)0$$aParhizkar, Shayan$$b2
001041580 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b3
001041580 7001_ $$0P:(DE-HGF)0$$aYu, Victor Wen-zhe$$b4
001041580 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b5
001041580 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b6
001041580 7001_ $$0P:(DE-HGF)0$$aBlum, Volker$$b7
001041580 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
001041580 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b9$$ufzj
001041580 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b10$$eCorresponding author
001041580 773__ $$a10.48550/ARXIV.2203.00985
001041580 8564_ $$uhttps://arxiv.org/abs/2203.00985
001041580 909CO $$ooai:juser.fz-juelich.de:1041580$$pVDB
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173990$$aForschungszentrum Jülich$$b0$$kFZJ
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b9$$kFZJ
001041580 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b10$$kFZJ
001041580 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041580 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041580 980__ $$apreprint
001041580 980__ $$aVDB
001041580 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041580 980__ $$aUNRESTRICTED