Home > Publications database > Boron nitride on SiC(0001) > print |
001 | 1041580 | ||
005 | 20250423202218.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2203.00985 |2 doi |
037 | _ | _ | |a FZJ-2025-02319 |
100 | 1 | _ | |a Lin, You-Ron |0 P:(DE-Juel1)173990 |b 0 |
245 | _ | _ | |a Boron nitride on SiC(0001) |
260 | _ | _ | |c 2022 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1745392945_24522 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a In the field of van der Waals heterostructures, the twist angle between stacked two-dimensional (2D) layers has been identified to be of utmost importance for the properties of the heterostructures. In this context, we previously reported the growth of a single layer of unconventionally oriented epitaxial graphene that forms in a surfactant atmosphere [F. C. Bocquet, et al., Phys. Rev. Lett. 125, 106102 (2020)]. The resulting G-R0$^\circ$ layer is aligned with the SiC lattice, and hence represents an important milestone towards high quality twisted bilayer graphene (tBLG), a frequently investigated model system in this field. Here, we focus on the surface structures obtained in the same surfactant atmosphere, but at lower preparation temperatures at which a boron nitride template layer forms on SiC(0001). In a comprehensive study based on complementary experimental and theoretical techniques, we find -- in contrast to the literature -- that this template layer is a hexagonal B$_x$N$_y$ layer, but not high-quality hBN. It is aligned with the SiC lattice and gradually replaced by low-quality graphene in the 0$^\circ$ orientation of the B$_x$N$_y$ template layer upon annealing. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Materials Science (cond-mat.mtrl-sci) |2 Other |
650 | _ | 7 | |a FOS: Physical sciences |2 Other |
700 | 1 | _ | |a Franke, Markus |0 P:(DE-Juel1)161374 |b 1 |
700 | 1 | _ | |a Parhizkar, Shayan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Raths, Miriam |0 P:(DE-Juel1)172607 |b 3 |
700 | 1 | _ | |a Yu, Victor Wen-zhe |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Lee, Tien-Lin |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Soubatch, Serguei |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Blum, Volker |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Tautz, F. Stefan |0 P:(DE-Juel1)128791 |b 8 |u fzj |
700 | 1 | _ | |a Kumpf, Christian |0 P:(DE-Juel1)128774 |b 9 |u fzj |
700 | 1 | _ | |a Bocquet, François C. |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.48550/ARXIV.2203.00985 |
856 | 4 | _ | |u https://arxiv.org/abs/2203.00985 |
909 | C | O | |o oai:juser.fz-juelich.de:1041580 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173990 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128791 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128774 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|