001     1041580
005     20250423202218.0
024 7 _ |a 10.48550/ARXIV.2203.00985
|2 doi
037 _ _ |a FZJ-2025-02319
100 1 _ |a Lin, You-Ron
|0 P:(DE-Juel1)173990
|b 0
245 _ _ |a Boron nitride on SiC(0001)
260 _ _ |c 2022
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745392945_24522
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a In the field of van der Waals heterostructures, the twist angle between stacked two-dimensional (2D) layers has been identified to be of utmost importance for the properties of the heterostructures. In this context, we previously reported the growth of a single layer of unconventionally oriented epitaxial graphene that forms in a surfactant atmosphere [F. C. Bocquet, et al., Phys. Rev. Lett. 125, 106102 (2020)]. The resulting G-R0$^\circ$ layer is aligned with the SiC lattice, and hence represents an important milestone towards high quality twisted bilayer graphene (tBLG), a frequently investigated model system in this field. Here, we focus on the surface structures obtained in the same surfactant atmosphere, but at lower preparation temperatures at which a boron nitride template layer forms on SiC(0001). In a comprehensive study based on complementary experimental and theoretical techniques, we find -- in contrast to the literature -- that this template layer is a hexagonal B$_x$N$_y$ layer, but not high-quality hBN. It is aligned with the SiC lattice and gradually replaced by low-quality graphene in the 0$^\circ$ orientation of the B$_x$N$_y$ template layer upon annealing.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Franke, Markus
|0 P:(DE-Juel1)161374
|b 1
700 1 _ |a Parhizkar, Shayan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Raths, Miriam
|0 P:(DE-Juel1)172607
|b 3
700 1 _ |a Yu, Victor Wen-zhe
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lee, Tien-Lin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Blum, Volker
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 8
|u fzj
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 9
|u fzj
700 1 _ |a Bocquet, François C.
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2203.00985
856 4 _ |u https://arxiv.org/abs/2203.00985
909 C O |o oai:juser.fz-juelich.de:1041580
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173990
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128774
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21