001041581 001__ 1041581
001041581 005__ 20250423202218.0
001041581 0247_ $$2doi$$a10.48550/ARXIV.2204.03753
001041581 037__ $$aFZJ-2025-02320
001041581 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0
001041581 245__ $$aProbing edge state conductance in ultra-thin topological insulator films
001041581 260__ $$barXiv$$c2022
001041581 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745392960_24519
001041581 3367_ $$2ORCID$$aWORKING_PAPER
001041581 3367_ $$028$$2EndNote$$aElectronic Article
001041581 3367_ $$2DRIVER$$apreprint
001041581 3367_ $$2BibTeX$$aARTICLE
001041581 3367_ $$2DataCite$$aOutput Types/Working Paper
001041581 520__ $$aQuantum spin Hall (QSH) insulators have unique electronic properties, comprising a band gap in their two-dimensional interior and one-dimensional spin-polarized edge states in which current flows ballistically. In scanning tunneling microscopy (STM), the edge states manifest themselves as a localized density of states. However, there is a significant research gap between the observation of edge states in nanoscale spectroscopy, and the detection of ballistic transport in edge channels which typically relies on transport experiments with microscale lithographic contacts. Here, we study few-layer films of the three-dimensional topological insulator (Bi$_{x}$Sb$_{1-x})_2$Te$_3$, for which a topological transition to a two-dimensional topological QSH insulator phase has been proposed. Indeed, an edge state in the local density of states is observed within the band gap. Yet, in nanoscale transport experiments with a four-tip STM, 2 and 3 quintuple layer films do not exhibit a ballistic conductance in the edge channels. This demonstrates that the detection of edge states in spectroscopy can be misleading with regard to the identification of a QSH phase. In contrast, nanoscale multi-tip transport experiments are a robust method for effectively pinpointing ballistic edge channels, as opposed to trivial edge states, in quantum materials.
001041581 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041581 588__ $$aDataset connected to DataCite
001041581 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041581 650_7 $$2Other$$aFOS: Physical sciences
001041581 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b1$$ufzj
001041581 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b2
001041581 7001_ $$0P:(DE-Juel1)133754$$aSoltner, Helmut$$b3$$ufzj
001041581 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b4$$ufzj
001041581 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b5$$ufzj
001041581 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6$$ufzj
001041581 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7$$ufzj
001041581 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b8$$eCorresponding author$$ufzj
001041581 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b9$$ufzj
001041581 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b10$$ufzj
001041581 773__ $$a10.48550/ARXIV.2204.03753
001041581 8564_ $$uhttps://arxiv.org/abs/2204.03753
001041581 909CO $$ooai:juser.fz-juelich.de:1041581$$pVDB
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b1$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133754$$aForschungszentrum Jülich$$b3$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b4$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b5$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b6$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b8$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b9$$kFZJ
001041581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b10$$kFZJ
001041581 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041581 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041581 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
001041581 9201_ $$0I:(DE-Juel1)ITE-20250108$$kITE$$lInstitute of Technology and Engineering$$x2
001041581 980__ $$apreprint
001041581 980__ $$aVDB
001041581 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041581 980__ $$aI:(DE-Juel1)PGI-9-20110106
001041581 980__ $$aI:(DE-Juel1)ITE-20250108
001041581 980__ $$aUNRESTRICTED