001041582 001__ 1041582
001041582 005__ 20250423202218.0
001041582 0247_ $$2doi$$a10.48550/ARXIV.2102.12708
001041582 037__ $$aFZJ-2025-02321
001041582 1001_ $$0P:(DE-HGF)0$$aMaiworm, Michael$$b0
001041582 245__ $$aControl of Scanning Quantum Dot Microscopy
001041582 260__ $$barXiv$$c2021
001041582 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745394534_5957
001041582 3367_ $$2ORCID$$aWORKING_PAPER
001041582 3367_ $$028$$2EndNote$$aElectronic Article
001041582 3367_ $$2DRIVER$$apreprint
001041582 3367_ $$2BibTeX$$aARTICLE
001041582 3367_ $$2DataCite$$aOutput Types/Working Paper
001041582 520__ $$aScanning quantum dot microscopy is a recently developed high-resolution microscopy technique that is based on atomic force microscopy and is capable of imaging the electrostatic potential of nanostructures like molecules or single atoms. Recently, it could be shown that it not only yields qualitatively but also quantitatively cutting edge images even on an atomic level. In this paper we present how control is a key enabling element to this. The developed control approach consists of a two-degree-of-freedom control framework that comprises a feedforward and a feedback part. For the latter we design two tailored feedback controllers. The feedforward part generates a reference for the current scanned line based on the previously scanned one. We discuss in detail various aspects of the presented control approach and its implications for scanning quantum dot microscopy. We evaluate the influence of the feedforward part and compare the two proposed feedback controllers. The proposed control algorithms speed up scanning quantum dot microscopy by more than a magnitude and enable to scan large sample areas.
001041582 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041582 588__ $$aDataset connected to DataCite
001041582 650_7 $$2Other$$aSystems and Control (eess.SY)
001041582 650_7 $$2Other$$aFOS: Electrical engineering, electronic engineering, information engineering
001041582 7001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b1$$eCorresponding author$$ufzj
001041582 7001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b2$$ufzj
001041582 7001_ $$0P:(DE-Juel1)164154$$aLeinen, Philipp$$b3
001041582 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b4$$ufzj
001041582 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b5$$ufzj
001041582 7001_ $$0P:(DE-HGF)0$$aFindeisen, Rolf$$b6
001041582 773__ $$a10.48550/ARXIV.2102.12708
001041582 8564_ $$uhttps://arxiv.org/abs/2102.12708
001041582 909CO $$ooai:juser.fz-juelich.de:1041582$$pVDB
001041582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b1$$kFZJ
001041582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b2$$kFZJ
001041582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b4$$kFZJ
001041582 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b5$$kFZJ
001041582 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041582 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041582 980__ $$apreprint
001041582 980__ $$aVDB
001041582 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041582 980__ $$aUNRESTRICTED