001041583 001__ 1041583
001041583 005__ 20250423202218.0
001041583 0247_ $$2doi$$a10.48550/ARXIV.2106.06217
001041583 037__ $$aFZJ-2025-02322
001041583 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0
001041583 245__ $$aLifting the spin-momentum locking in ultra-thin topological insulator films
001041583 260__ $$barXiv$$c2021
001041583 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745392973_24519
001041583 3367_ $$2ORCID$$aWORKING_PAPER
001041583 3367_ $$028$$2EndNote$$aElectronic Article
001041583 3367_ $$2DRIVER$$apreprint
001041583 3367_ $$2BibTeX$$aARTICLE
001041583 3367_ $$2DataCite$$aOutput Types/Working Paper
001041583 520__ $$aThree-dimensional (3D) topological insulators (TIs) are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, we study the thickness-dependent transport properties across the quantum phase transition on the example of (Bi$_{0.16}$Sb$_{0.84}$)$_2$Te$_3$ films, with a four-tip scanning tunnelling microscope. Our findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. Our experiments provide crucial steps towards the detection of quantum spin Hall states in transport measurements.
001041583 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041583 588__ $$aDataset connected to DataCite
001041583 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041583 650_7 $$2Other$$aFOS: Physical sciences
001041583 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b1$$ufzj
001041583 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b2$$ufzj
001041583 7001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b3$$ufzj
001041583 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b4$$ufzj
001041583 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5$$ufzj
001041583 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6$$ufzj
001041583 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b7$$eCorresponding author$$ufzj
001041583 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
001041583 773__ $$a10.48550/ARXIV.2106.06217
001041583 8564_ $$uhttps://arxiv.org/abs/2106.06217
001041583 909CO $$ooai:juser.fz-juelich.de:1041583$$pVDB
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b1$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b2$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b3$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b4$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b5$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b7$$kFZJ
001041583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001041583 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041583 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041583 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
001041583 980__ $$apreprint
001041583 980__ $$aVDB
001041583 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041583 980__ $$aI:(DE-Juel1)PGI-9-20110106
001041583 980__ $$aUNRESTRICTED