001     1041583
005     20250423202218.0
024 7 _ |a 10.48550/ARXIV.2106.06217
|2 doi
037 _ _ |a FZJ-2025-02322
100 1 _ |a Leis, Arthur
|0 P:(DE-Juel1)168208
|b 0
245 _ _ |a Lifting the spin-momentum locking in ultra-thin topological insulator films
260 _ _ |c 2021
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745392973_24519
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Three-dimensional (3D) topological insulators (TIs) are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, we study the thickness-dependent transport properties across the quantum phase transition on the example of (Bi$_{0.16}$Sb$_{0.84}$)$_2$Te$_3$ films, with a four-tip scanning tunnelling microscope. Our findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. Our experiments provide crucial steps towards the detection of quantum spin Hall states in transport measurements.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Schleenvoigt, Michael
|0 P:(DE-Juel1)171405
|b 1
|u fzj
700 1 _ |a Cherepanov, Vasily
|0 P:(DE-Juel1)128762
|b 2
|u fzj
700 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 3
|u fzj
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 4
|u fzj
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 5
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 6
|u fzj
700 1 _ |a Voigtländer, Bert
|0 P:(DE-Juel1)128794
|b 7
|e Corresponding author
|u fzj
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 8
|u fzj
773 _ _ |a 10.48550/ARXIV.2106.06217
856 4 _ |u https://arxiv.org/abs/2106.06217
909 C O |o oai:juser.fz-juelich.de:1041583
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162163
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21