001041584 001__ 1041584
001041584 005__ 20250423202218.0
001041584 0247_ $$2doi$$a10.48550/ARXIV.2103.11945
001041584 037__ $$aFZJ-2025-02323
001041584 1001_ $$0P:(DE-Juel1)180950$$aEsat, Taner$$b0$$eFirst author$$ufzj
001041584 245__ $$aA millikelvin scanning tunneling microscope in ultra-high vacuum with adiabatic demagnetization refrigeration
001041584 260__ $$barXiv$$c2021
001041584 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745394507_5955
001041584 3367_ $$2ORCID$$aWORKING_PAPER
001041584 3367_ $$028$$2EndNote$$aElectronic Article
001041584 3367_ $$2DRIVER$$apreprint
001041584 3367_ $$2BibTeX$$aARTICLE
001041584 3367_ $$2DataCite$$aOutput Types/Working Paper
001041584 520__ $$aWe present the design and performance of an ultra-high vacuum (UHV) scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature in the range between 30 mK and 1 K with the accuracy of up to 7 $μ$K. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h. The single-shot adiabatic demagnetization refrigerator (ADR) can be regenerated automatically within 7 hours while keeping the STM temperature below 5 K. The whole setup is located in a vibrationally isolated, electromagnetically shielded laboratory with no mechanical pumping lines penetrating through its isolation walls. The 1K pot of the ADR cryostat can be operated silently for more than 20 days in a single-shot mode using a custom-built high-capacity cryopump. A high degree of vibrational decoupling together with the use of a specially-designed minimalistic STM head provides an outstanding mechanical stability, demonstrated by the tunneling current noise, STM imaging, and scanning tunneling spectroscopy measurements all performed on atomically clean Al(100) surface.
001041584 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041584 588__ $$aDataset connected to DataCite
001041584 650_7 $$2Other$$aInstrumentation and Detectors (physics.ins-det)
001041584 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041584 650_7 $$2Other$$aFOS: Physical sciences
001041584 7001_ $$0P:(DE-Juel1)156534$$aBorgens, Peter$$b1
001041584 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b2
001041584 7001_ $$0P:(DE-Juel1)128763$$aCoenen, Peter$$b3$$ufzj
001041584 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b4$$ufzj
001041584 7001_ $$0P:(DE-Juel1)180226$$aRaccanelli, Andrea$$b5
001041584 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b6$$ufzj
001041584 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b7$$eCorresponding author$$ufzj
001041584 773__ $$a10.48550/ARXIV.2103.11945
001041584 8564_ $$uhttps://arxiv.org/abs/2103.11945
001041584 909CO $$ooai:juser.fz-juelich.de:1041584$$pVDB
001041584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180950$$aForschungszentrum Jülich$$b0$$kFZJ
001041584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128763$$aForschungszentrum Jülich$$b3$$kFZJ
001041584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b4$$kFZJ
001041584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b6$$kFZJ
001041584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b7$$kFZJ
001041584 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041584 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041584 980__ $$apreprint
001041584 980__ $$aVDB
001041584 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041584 980__ $$aUNRESTRICTED