001     1041584
005     20250423202218.0
024 7 _ |a 10.48550/ARXIV.2103.11945
|2 doi
037 _ _ |a FZJ-2025-02323
100 1 _ |a Esat, Taner
|0 P:(DE-Juel1)180950
|b 0
|e First author
|u fzj
245 _ _ |a A millikelvin scanning tunneling microscope in ultra-high vacuum with adiabatic demagnetization refrigeration
260 _ _ |c 2021
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745394507_5955
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We present the design and performance of an ultra-high vacuum (UHV) scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature in the range between 30 mK and 1 K with the accuracy of up to 7 $μ$K. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h. The single-shot adiabatic demagnetization refrigerator (ADR) can be regenerated automatically within 7 hours while keeping the STM temperature below 5 K. The whole setup is located in a vibrationally isolated, electromagnetically shielded laboratory with no mechanical pumping lines penetrating through its isolation walls. The 1K pot of the ADR cryostat can be operated silently for more than 20 days in a single-shot mode using a custom-built high-capacity cryopump. A high degree of vibrational decoupling together with the use of a specially-designed minimalistic STM head provides an outstanding mechanical stability, demonstrated by the tunneling current noise, STM imaging, and scanning tunneling spectroscopy measurements all performed on atomically clean Al(100) surface.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Instrumentation and Detectors (physics.ins-det)
|2 Other
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Borgens, Peter
|0 P:(DE-Juel1)156534
|b 1
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 2
700 1 _ |a Coenen, Peter
|0 P:(DE-Juel1)128763
|b 3
|u fzj
700 1 _ |a Cherepanov, Vasily
|0 P:(DE-Juel1)128762
|b 4
|u fzj
700 1 _ |a Raccanelli, Andrea
|0 P:(DE-Juel1)180226
|b 5
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 6
|u fzj
700 1 _ |a Temirov, Ruslan
|0 P:(DE-Juel1)128792
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2103.11945
856 4 _ |u https://arxiv.org/abs/2103.11945
909 C O |o oai:juser.fz-juelich.de:1041584
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128762
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21