001041585 001__ 1041585
001041585 005__ 20250423202218.0
001041585 0247_ $$2doi$$a10.48550/ARXIV.2111.00250
001041585 037__ $$aFZJ-2025-02324
001041585 1001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b0$$ufzj
001041585 245__ $$aMomentum-space imaging of σ-orbitals for chemical analysis
001041585 260__ $$barXiv$$c2021
001041585 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745393023_24520
001041585 3367_ $$2ORCID$$aWORKING_PAPER
001041585 3367_ $$028$$2EndNote$$aElectronic Article
001041585 3367_ $$2DRIVER$$apreprint
001041585 3367_ $$2BibTeX$$aARTICLE
001041585 3367_ $$2DataCite$$aOutput Types/Working Paper
001041585 520__ $$aTracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π-character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ-orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range, and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.
001041585 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041585 588__ $$aDataset connected to DataCite
001041585 650_7 $$2Other$$aChemical Physics (physics.chem-ph)
001041585 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041585 650_7 $$2Other$$aFOS: Physical sciences
001041585 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b1
001041585 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b2
001041585 7001_ $$0P:(DE-HGF)0$$aBrandstetter, Dominik$$b3
001041585 7001_ $$0P:(DE-HGF)0$$aKirschner, Hans$$b4
001041585 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b5
001041585 7001_ $$0P:(DE-HGF)0$$aKoller, Georg$$b6
001041585 7001_ $$0P:(DE-HGF)0$$aGottwald, Alexander$$b7
001041585 7001_ $$0P:(DE-HGF)0$$aRichter, Mathias$$b8
001041585 7001_ $$0P:(DE-HGF)0$$aGottfried, J. Michael$$b9
001041585 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b10
001041585 7001_ $$0P:(DE-HGF)0$$aPuschnig, Peter$$b11$$eCorresponding author
001041585 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b12$$eCorresponding author
001041585 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b13$$ufzj
001041585 773__ $$a10.48550/ARXIV.2111.00250
001041585 8564_ $$uhttps://arxiv.org/abs/2111.00250
001041585 909CO $$ooai:juser.fz-juelich.de:1041585$$pVDB
001041585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b0$$kFZJ
001041585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b12$$kFZJ
001041585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b13$$kFZJ
001041585 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041585 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041585 980__ $$apreprint
001041585 980__ $$aVDB
001041585 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041585 980__ $$aUNRESTRICTED