001     1041585
005     20250423202218.0
024 7 _ |a 10.48550/ARXIV.2111.00250
|2 doi
037 _ _ |a FZJ-2025-02324
100 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 0
|u fzj
245 _ _ |a Momentum-space imaging of σ-orbitals for chemical analysis
260 _ _ |c 2021
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745393023_24520
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π-character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ-orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range, and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Chemical Physics (physics.chem-ph)
|2 Other
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 1
700 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brandstetter, Dominik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kirschner, Hans
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bocquet, François C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koller, Georg
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gottwald, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gottfried, J. Michael
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Puschnig, Peter
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Soubatch, Serguei
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 13
|u fzj
773 _ _ |a 10.48550/ARXIV.2111.00250
856 4 _ |u https://arxiv.org/abs/2111.00250
909 C O |o oai:juser.fz-juelich.de:1041585
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21