001041586 001__ 1041586
001041586 005__ 20250423202218.0
001041586 0247_ $$2doi$$a10.48550/ARXIV.1811.00351
001041586 037__ $$aFZJ-2025-02325
001041586 1001_ $$0P:(DE-HGF)0$$aŽonda, Martin$$b0$$eCorresponding author
001041586 245__ $$aResolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems
001041586 260__ $$barXiv$$c2018
001041586 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745394520_5958
001041586 3367_ $$2ORCID$$aWORKING_PAPER
001041586 3367_ $$028$$2EndNote$$aElectronic Article
001041586 3367_ $$2DRIVER$$apreprint
001041586 3367_ $$2BibTeX$$aARTICLE
001041586 3367_ $$2DataCite$$aOutput Types/Working Paper
001041586 520__ $$aDetermination of the molecular Kondo temperature $T_K$ poses a challenge in most cases when the experimental temperature cannot be tuned to a sufficient extent. We show how this ambiguity can be resolved if additional control parameters are present, such as magnetic field and mechanical gating. We record the evolution of the differential conductance by lifting an individual molecule from the metal surface with the tip of a scanning tunneling microscope. By fitting the measured conductance spectra with the single impurity Anderson model we are able to demonstrate that the lifting tunes the junction continuously from the strongly correlated Kondo-singlet to the free spin $1/2$ ground state. In the crossover regime, where $T_K$ is similar to the temperature of experiment, the fitting yields ambiguous estimates of $T_K$ varying by an order of magnitude. We show that analysis of the conductance measured in two distinct external magnetic fields can be used to resolve this problem.
001041586 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041586 588__ $$aDataset connected to DataCite
001041586 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041586 650_7 $$2Other$$aFOS: Physical sciences
001041586 7001_ $$0P:(DE-HGF)0$$aStetsovych, Oleksandr$$b1
001041586 7001_ $$0P:(DE-HGF)0$$aKorytár, Richard$$b2
001041586 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b3$$ufzj
001041586 7001_ $$0P:(DE-Juel1)128792$$aTemirov, Ruslan$$b4$$ufzj
001041586 7001_ $$0P:(DE-HGF)0$$aRacanelli, Andrea$$b5
001041586 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b6$$ufzj
001041586 7001_ $$0P:(DE-HGF)0$$aJelínek, Pavel$$b7
001041586 7001_ $$0P:(DE-HGF)0$$aNovotný, Tomáš$$b8
001041586 7001_ $$0P:(DE-HGF)0$$aŠvec, Martin$$b9$$eCorresponding author
001041586 773__ $$a10.48550/ARXIV.1811.00351
001041586 8564_ $$uhttps://arxiv.org/abs/1811.00351
001041586 909CO $$ooai:juser.fz-juelich.de:1041586$$pVDB
001041586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b3$$kFZJ
001041586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich$$b4$$kFZJ
001041586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
001041586 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b6$$kFZJ
001041586 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041586 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041586 980__ $$apreprint
001041586 980__ $$aVDB
001041586 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041586 980__ $$aUNRESTRICTED