001041606 001__ 1041606
001041606 005__ 20250424202216.0
001041606 0247_ $$2doi$$a10.48550/ARXIV.2105.14904
001041606 037__ $$aFZJ-2025-02340
001041606 1001_ $$0P:(DE-Juel1)173990$$aLin, You-Ron$$b0
001041606 245__ $$aThe Vertical Position of Sr Dopants in the Sr$_x$Bi$_2$Se$_3$ Superconductor
001041606 260__ $$barXiv$$c2021
001041606 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745493915_28182
001041606 3367_ $$2ORCID$$aWORKING_PAPER
001041606 3367_ $$028$$2EndNote$$aElectronic Article
001041606 3367_ $$2DRIVER$$apreprint
001041606 3367_ $$2BibTeX$$aARTICLE
001041606 3367_ $$2DataCite$$aOutput Types/Working Paper
001041606 520__ $$aThe discovery of topological superconductivity in doped Bi$_2$Se$_3$ made this class of materials highly important for the field of condensed matter physics. However, the structural origin of the superconducting state remained elusive, despite being investigated intensively in recent years. We use scanning tunneling microscopy and the normal incidence x-ray standing wave (NIXSW) technique in order to determine the vertical position of the dopants -- one of the key parameters for understanding topological superconductivity in this material -- for the case of Sr$_{x}$Bi$_2$Se$_3$. In a novel approach we analyze the NIXSW data in consideration of the inelastic mean free path of the photoemitted electrons, which allows us to distinguish between symmetry equivalent sites. We find that Sr-atoms are not situated inside the van der Waals gap between the Bi$_2$Se$_3$ quintuple layers but rather in the quintuple layer close to the outer Se planes.
001041606 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041606 588__ $$aDataset connected to DataCite
001041606 650_7 $$2Other$$aSuperconductivity (cond-mat.supr-con)
001041606 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041606 650_7 $$2Other$$aFOS: Physical sciences
001041606 7001_ $$0P:(DE-HGF)0$$aBagchi, Mahasweta$$b1
001041606 7001_ $$0P:(DE-HGF)0$$aSoubatch, Serguei$$b2
001041606 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b3
001041606 7001_ $$0P:(DE-HGF)0$$aBrede, Jens$$b4
001041606 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b5
001041606 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b6$$eCorresponding author$$ufzj
001041606 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b7
001041606 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b8$$ufzj
001041606 773__ $$a10.48550/ARXIV.2105.14904
001041606 8564_ $$uhttps://arxiv.org/abs/2105.14904
001041606 909CO $$ooai:juser.fz-juelich.de:1041606$$pVDB
001041606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001041606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
001041606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b6$$kFZJ
001041606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
001041606 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041606 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041606 980__ $$apreprint
001041606 980__ $$aVDB
001041606 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041606 980__ $$aUNRESTRICTED