001041607 001__ 1041607
001041607 005__ 20250424202216.0
001041607 0247_ $$2doi$$a10.48550/ARXIV.2009.13099
001041607 037__ $$aFZJ-2025-02341
001041607 1001_ $$0P:(DE-HGF)0$$aBrandstetter, Dominik$$b0
001041607 245__ $$akMap.py: A Python program for simulation and data analysis in photoemission tomography
001041607 260__ $$barXiv$$c2020
001041607 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1745493932_28180
001041607 3367_ $$2ORCID$$aWORKING_PAPER
001041607 3367_ $$028$$2EndNote$$aElectronic Article
001041607 3367_ $$2DRIVER$$apreprint
001041607 3367_ $$2BibTeX$$aARTICLE
001041607 3367_ $$2DataCite$$aOutput Types/Working Paper
001041607 520__ $$aFor organic molecules adsorbed as well-oriented ultra-thin films on metallic surfaces, angle-resolved photoemission spectroscopy has evolved into a technique called photoemission tomography (PT). By approximating the final state of the photoemitted electron as a free electron, PT uses the angular dependence of the photocurrent, a so-called momentum map or k-map, and interprets it as the Fourier transform of the initial state's molecular orbital, thereby gains insights into the geometric and electronic structure of organic/metal interfaces. In this contribution, we present kMap.py which is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform of real space molecular orbital distributions, which are used as program input and taken from density functional calculations. The program allows the user to vary a number of simulation parameters such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program enabling a direct visual comparison as well as an automatic optimization procedure to determine structural parameters of the molecules or weights of molecular orbitals contributions. With an increasing number of experimental groups employing photoemission tomography to study adsorbate layers, we expect kMap.py to serve as an ideal analysis software to further extend the applicability of PT.
001041607 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001041607 588__ $$aDataset connected to DataCite
001041607 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001041607 650_7 $$2Other$$aOther Condensed Matter (cond-mat.other)
001041607 650_7 $$2Other$$aFOS: Physical sciences
001041607 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b1
001041607 7001_ $$0P:(DE-HGF)0$$aLüftner, Daniel$$b2
001041607 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b3$$ufzj
001041607 7001_ $$0P:(DE-HGF)0$$aPuschnig, Peter$$b4$$eCorresponding author
001041607 773__ $$a10.48550/ARXIV.2009.13099
001041607 8564_ $$uhttps://arxiv.org/abs/2009.13099
001041607 909CO $$ooai:juser.fz-juelich.de:1041607$$pVDB
001041607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
001041607 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001041607 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001041607 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001041607 980__ $$apreprint
001041607 980__ $$aVDB
001041607 980__ $$aI:(DE-Juel1)PGI-3-20110106
001041607 980__ $$aUNRESTRICTED