001     1041610
005     20250424202216.0
024 7 _ |a 10.48550/ARXIV.2002.11952
|2 doi
037 _ _ |a FZJ-2025-02344
100 1 _ |a Leinen, Philipp
|0 P:(DE-Juel1)164154
|b 0
245 _ _ |a Autonomous robotic nanofabrication with reinforcement learning
260 _ _ |c 2020
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1745493949_28179
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The ability to handle single molecules as effectively as macroscopic building-blocks would enable the construction of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present a strategy to work around both obstacles, and demonstrate autonomous robotic nanofabrication by manipulating single molecules. Our approach employs reinforcement learning (RL), which finds solution strategies even in the face of large uncertainty and sparse feedback. We demonstrate the potential of our RL approach by removing molecules autonomously with a scanning probe microscope from a supramolecular structure -- an exemplary task of subtractive manufacturing at the nanoscale. Our RL agent reaches an excellent performance, enabling us to automate a task which previously had to be performed by a human. We anticipate that our work opens the way towards autonomous agents for the robotic construction of functional supramolecular structures with speed, precision and perseverance beyond our current capabilities.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a Artificial Intelligence (cs.AI)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a Robotics (cs.RO)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Esders, Malte
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schütt, Kristof T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wagner, Christian
|0 P:(DE-Juel1)140276
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Müller, Klaus-Robert
|0 P:(DE-Juel1)5055
|b 4
|e Corresponding author
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 5
|u fzj
773 _ _ |a 10.48550/ARXIV.2002.11952
856 4 _ |u https://arxiv.org/abs/2002.11952
909 C O |o oai:juser.fz-juelich.de:1041610
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21