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N E U R O S C I E N C E

Beyond volume: Unraveling the genetics of  
human brain geometry
Sabrina A. Primus1,2,3, Felix Hoffstaedter4,5, Federico Raimondo4,5, Simon B. Eickhoff4,5,  
Juliane Winkelmann1,3,6,7, Konrad Oexle1,2,3*†, Kaustubh R. Patil4,5*†

Brain geometry affects brain function. A quantitative encoding of form is provided by the Laplace-Beltrami opera-
tor’s spectrum of eigenvalues (LBS). We examined LBS genetics of 22 subcortical brain structures and cerebellum 
in 19,862 healthy White-British UK Biobank participants by multivariate genome-wide association study on the 
first 49 eigenvalues each. Controlling for surface and volume, we identified 80 unique variants influencing the 
shapes of one or several structures, with the highest yield (37 variants) for brain stem. The previously known influ-
ence of several of these loci on basic morphology, such as volume, is thus shown to also influence complex shape. 
Known associations of observed loci with blood pressure, neurodegeneration, alcohol consumption, and mental 
disorders hint at preclinical stages of these conditions potentially mediating the genetic effect on brain morphology. 
Significant correlations between LBS of several brain structures and the polygenic risks of hypertension, ischemic 
stroke, and schizophrenia evince brain shapes as early biomarkers.

INTRODUCTION
The human brain comprises an intricate constellation of diverse substruc-
tures, each of which has specific functions and forms complex inter-
actions with other parts of the brain. Investigating the morphological 
properties of these substructures and deciphering their genetic underpin-
nings is imperative for advancing our understanding of the human brain 
in health and disease. Previous genetic studies have investigated crude 
parameters such as volume and surface area (1–5). The genetics of the 
intricate shapes of brain structures, however, remain largely unexamined, 
representing a gap in comprehensive understanding of brain anatomy.

The structures within the human brain exhibit a range of shapes, 
from the more spherical amygdala to the elongated hippocampus. 
Basic metrics such as volume and surface area do not adequately 
capture the nuanced details of these shapes and thus fall short of 
providing a sufficient description of their morphology. There is evi-
dence for a high interindividual variance in these intricate details, 
with a substantial proportion being heritable (6–8). Initial efforts to 
delve into the genetic underpinning of this heritable aspect used 
techniques like voxel-based analysis in combination with dimension 
reduction methods (9, 10) or global-to-local representations of brain 
shapes (11, 12). Each of these techniques carries its own challenges, 
including reduced robustness and accuracy because of suboptimal 
image registration, high computational effort, or a lack of physical 
interpretability as a result of dimensionality reduction or a prohibitive 
dimensionality of image-derived features.

The Laplace-Beltrami operator provides a multivariate spectral 
representation of a shape, capturing its characteristics in detail (13, 14). 
The Laplace-Beltrami spectrum (LBS), a set of ordered eigenvalues, 
is obtained by solving the Helmholtz equation, a time-independent 
form of the wave equation, on a Riemannian manifold that can be 
the surface of a given brain structure. Solutions are decomposed into 
eigenfunctions (also referred to as “eigenmodes”) and their corre-
sponding eigenvalues, representing the natural vibrations and their 
squared frequencies, respectively, on the manifold underlying the 
shape, akin to the harmonic frequencies of the membrane of a drum 
(fig. S1) (15). Each sound or other vibration of a membrane can be 
represented as a weighted sum of its eigenmodes, relating closely to 
the theory of spectral analysis in Fourier series. Necessarily, the ei-
genmodes are strongly linked to a shape’s geometry, as visualized in 
a seminal experiment by Chladni (16) using vibrating plates. It has 
been asked since then whether a shape can be represented by a 
unique series of eigenvalues or, metaphorically, whether the shape 
of a drum can be heard (17). While the answer is affirmative for one-
dimensional shapes whose lengths are made audible by the harmon-
ics or pure tones of string instruments, for instance, this is not true 
in general for shapes with more than one dimension as there exist 
isospectral shapes (18). Nevertheless, the known counterexamples 
appear to be rare (13), and under certain symmetry assumptions, a 
unique assignment is possible (19). Consequentially, a relatively small 
subsequence (e.g., 50 eigenvalues) of the increasingly ordered spectrum 
contains enough geometric information to describe a shape uniquely 
enough by adequately capturing its curvatures (13, 15, 20, 21), al-
though the spectrum usually contains an infinite number of eigen-
values. Following Ge et al. (6), we refer to this subsequence as the 
LBS [also known as Shape-DNA (13)]. This multidimensional in-
trinsic shape representation, as an isometric invariant, is indepen-
dent of rotation, translation, and scaling of the coordinate system, 
eliminating the need for error-prone interindividual image registration, 
and behaves continuously with any change in the manifold (13). Re-
cently, there has been considerable interest in using geometric ei-
genmodes to explain shape-associated biological mechanisms (22). 
The LBS, however, appears to be a more straightforward shape de-
scriptor that is computed efficiently (21) and thus well suited for 
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large-scale genome-wide association studies (GWASs), which re-
quire a quantitative representation of the shape of brain structures at 
the individual level.

By performing GWAS, we aimed to reveal information on gene 
loci that contribute to the heritability of brain morphology as quan-
tified by LBS. We derived the LBSs of 22 different brain structures 
from a large magnetic resonance imaging (MRI) dataset provided 
by the UK Biobank (UKB). To reveal shape-specific signals, we con-
trolled for global characteristics such as brain volume and surface 
area. Because all eigenvalues in an LBS contribute to the description 
of the respective shape, it is important to study them jointly while 
accounting for their mutual dependencies. To achieve this, we used 
the state-of-the-art multivariate GWAS tool MOSTest (2), which ac-
counts for the pairwise correlations between eigenvalues and has 
increased power for detecting genetic associations by considering 
their joint distribution. Our study focused on subcortical structures, 
brain stem, and cerebellum, in keeping with several studies that 
studied the genetics of their volumes (2, 5, 23–25). These parts of the 
brain are involved not only in learning and decision-making processes 
(26) but also in hotspots of various brain disorders (7, 23–25, 27). We 
identified specific genetic influences on their shapes, investigated ge-
netic asymmetries and similarities among structures, obtained precise 
estimates of the heritability of these shapes, and performed genetic 
correlation and enrichment analyses with respect to biological path-
ways, traits, and diseases.

RESULTS
Multivariate genome-wide analyses
MOSTest on the LBS of each of the 22 brain structures in 19,862 healthy, 
unrelated, White-British individuals (10,427 female, with mean age ± 

SD of 64.3 ± 7.4 years) yielded a total of 148 significant single-nucleotide 
polymorphisms (SNPs; Bonferroni-corrected for multiple testing 
P < 1/22 * 5 × 10−8 = 2.27 × 10−9), which were each independent 
[linkage disequilibrium (LD) of r2 < 0.6 ] in their respective LBS 
GWAS. Some of them were significant in multiple brain structures. 
Thus, across all 22 GWASs, there were 80 unique SNPs independently 
associated with the shape of at least one brain structure (table S1 and 
figs. S2 to S4).

Using FUMA (28) for clumping the results of each brain structure 
(see Materials and Methods), we identified 62 genomic risk loci in 
total, of which 48 were shared by at least 2 of the 22 brain structures 
(Fig. 1). The largest number of independent significant SNPs was 
found for the brain stem (37) (Fig. 2B), followed by left cerebellum 
white matter (29). Only the amygdala did not show any significant 
signals after Bonferroni correction. The strongest signal was ob-
served for lead SNP rs13107325 on chromosome 4 with a P value of 
2.15 × 10−74 in association with the LBS of the left cerebellum white 
matter. This SNP association was observed most frequently, appear-
ing in 14 of the 22 brain structures.

Forty-nine of the 80 independent SNPs, either themselves or via 
a proxy variant 

(

r2≥0.6
)

 , have previously been identified in GWASs 
on brain shape–related traits (e.g., volume, surface area, or cortical 
thickness; table S2) and are listed in the GWAS catalog implemented 
in FUMA. Of these 80, 13 have been associated exclusively with 
other traits (not brain shape–related), and 18 were not related to any 
GWAS catalog entry (table S1).

Functional annotations of genomic risk loci
We annotated our results using ANNOVAR (29) as implemented in 
FUMA. Of the 80 independent significant SNPs, 3 were exonic, 
27 were intronic, and 33 were in intergenic regions (Fig. 2A and 
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Fig. 1. Overview of genomic risk loci in different brain structures. (A) Anatomical representation of the subcortical brain structures assessed in the present study. 
(B) Circular plot indicating the genomic risk loci derived by MOSTest GWAS on each brain structure (with the exception of the amygdala, which did not provide a 
genome-wide significant signal). Bilateral structures are represented on neighboring circles, having the same colors as in (A), with the right-side structure represented 
more centrally and lighter. If multiple structures share a locus, the bars indicating their positions on the respective circles have the same color.
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table S3). All three exonic variants (rs13107325, rs1687225, and 
rs601558) were nonsynonymous, each having a combined annotation-
dependent depletion (CADD) score higher than 15.23 and belong, 
therefore, to the 3% most deleterious SNPs (30). We further found 
28 exonic nonsynonymous (ExNS) variants in LD 

(

r2≥0.6
)

 with one 
of the independent significant SNPs, with 17 of them having a CADD 
score higher than 15.23 or a Regulome DB score (RDB; small scores 
indicating a high likelihood of being a regulatory SNP) lower than 
2 (Table 1 and table S4).

The pleiotropic missense variant rs13107325, as mentioned above, 
affects the metal transporter SLC39A8 and is, with a CADD score 
higher than 20 (23.1), among the 1% most deleterious SNPs. While 
ClinVar (31) and AlphaMissense (32) classify this pleiotropic vari-
ant as benign, it is a well-known risk factor for schizophrenia (SCZ) 
(33–35) and has also been found in conjunction with inflammation-
based diseases like Crohn’s disease (36) and blood pressure (37), as 
well as brain imaging phenotypes (9).

VWA5B2 on chromosome 3 comprises the ExNS missense vari-
ant rs1687225, an independent significant SNP associated with 
brain stem LBS (P = 5.6 × 10−10). The CADD score of this variant is 
relatively high (19), but this SNP is not reported in ClinVar and 
AlphaMissense predicts it to be likely benign. Of note, the variant is 
a brain expression quantitative trait locus (eQTL) for different genes 
and an independent brain cis-eQTL for VWA5B2 itself according to 
GTEx (version 8) (table S5).

The ExNS missense variant rs601558 on chromosome 8 was 
significantly associated with the LBS of the left cerebellum cortex 
(P = 8.0 × 10−11) and is contained in RSPO2, for which it is also a 
brain eQTL. Despite a high CADD score of 22, this variant is clas-
sified as benign by ClinVar and AlphaMissense.

Despite its benign classification by ClinVar and AlphaMissense, 
rs17651549 in MAPT on chromosome 17, which was associated with 
the brain stem LBS at P = 1.0 × 10−13, had the highest CADD score 
(26.8) among the ExNS variants. It was in nearly complete LD (r2 = 
0.96) with the lead SNP rs568589031 (brain stem, P = 2.4 × 10−16) 
of this large genomic risk locus that included altogether six ExNS 
SNPs, which, according to the CADD score, all belong to the 3% 
most deleterious SNPs (Table 1) and act as brain eQTLs of CRHR1, 

SPPL2C, MAPT, and KANSL1. Because of its high linkage, this large 
genomic region, also referred to as MAPT locus, is known to be 
highly complex (38) and we observed 18 ExNS SNPs being brain 
eQTLs of 17 protein-coding genes in total (table S6).

Asymmetry and similarity of brain structures
To assess possible genetic asymmetries and similarities of brain 
structures, we compared the P values of the 80 unique independent 
SNPs between structures and hemispheres (table S7). Applying a 
conservative Bonferroni correction for 80 * 22 comparisons to the 
nominal threshold of 0.05, we found five genome-wide significant (P < 
2.27 × 10−9) SNPs for cerebellum white matter and one for putamen that 
were not significant in the respective contralateral structures. At 
nominal significance, only the intron variant rs2845878 in FAT3, 
which came up in the GWAS on right putamen, lacked symmetry. 
Proxy variants of rs2845878 

(

r2≥0.6
)

 have been linked to the mean 
volume of caudate and putamen according to the GWAS catalog (4). 
Principal components analysis (PCA) of −log10-transformed P val-
ues of these 80 SNPs showed a high level of symmetry and similarity 
in genetic signals (Fig. 3 and table S8): All subcortical structures as 
well as the cerebellum cortex were mapped close to each other in 
this principal component (PC) space, independent of their hemi-
spherical assignment. Moreover, most structures shared genetic ar-
chitecture according to their placement adjacent to each other as in 
case of the basal ganglia, for instance. However, the brain stem, cer-
ebellum white matter, and hippocampus were substantially distanced 
from the others in at least one of the first three PCs. The hippocampus 
was probably notable for its dissimilar pattern of few associated 
SNPs, while the particular position of the brain stem and cerebellum 
white matter could be due to their highly significant signals in addi-
tion to their quantity.

When investigating genetics that were similar for several struc-
tures, the ExNS variant rs13107325 in SLC39A8, along with several 
others within the same risk locus on chromosome 4, the intergenic 
SNP rs6658111 on chromosome 1, and the intronic variant rs12146713 
in NUAK1 on chromosome 12 emerged as the most frequently 
shared independent SNPs. After Bonferroni correction for 80 * 22 
comparisons, these three were significant in 10 to 15 structures and 

BA

Fig. 2. SNP-based associations with the LBS. (A) Pie chart showing the frequency of functional annotations of all 80 independent significant SNPs. (B) Manhattan 
plot of multivariate MOSTest results of the brain stem with corrected and noncorrected genome-wide significant thresholds [P = 2.27 × 10−9 (red line) and P = 5 × 10−8 
(blue line)].
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Table 1. Exonic nonsynonymous variants in LD (r 2 ≥ 0.6) with one of the independent significant SNPs across all brain structures. Variants are listed with 
noneffect allele (NEA), effect allele (EA), effect allele frequency (EAF), minimal P value (minP) across all structures, CADD and RDB scores, most likely affected 
gene, and the independent significant SNPs (IndSigSNP) to which they are linked most strongly as indicated by the correlation value r2. The respective 
IndSigSNP may differ between brain structures according to the structure-specific GWAS results. Bold typing of a variant indicates genome-wide significance in 
at least one brain structure. Variants in italics are independent significant SNPs.

rsID Position EA NEA EAF MinP CADD RDB Gene Brain structure  
(IndSigSNP, r2)

  rs1687225﻿ chr3:183948663 A G 0.23 6 × 10−10 19.0 4 VWA5B2 Brain stem  
(rs1687225, 1.00)

 rs902417 chr3:183951431 T C 0.25 7 × 10−08 15.4 5 VWA5B2 Brain stem  
(rs1687225, 0.86)

 rs3733197 chr4:102839287 A G 0.35 2 × 10−06 14.2 7 BANK1 Left cerebellum  
white matter 

(rs114614648, 0.72)

  rs13107325﻿ chr4:103188709 T C 0.08 2 × 10−74 23.1 5 SLC39A8 Accumbens area (right + 
left: rs13107325, 1.00); 

cerebellum cortex (right +  
left: rs13107325, 1.00); 

cerebellum white matter 
(right + left: rs13107325, 

1.00); pallidum (right +  
left: rs13107325, 1.00); 
putamen (right + left: 

rs13107325, 1.00); 
ventral DC (right + left: 

rs13107325, 1.00); 
thalamus proper (right: 
rs13107325, 1.00; left: 

rs13135092, 0.93)

 rs7800072 chr7:84628989 G T 0.32 3 × 10−08 18.3 5 SEMA3D Brain stem  
(rs10247311, 0.90)

  rs601558﻿ chr8:108970367 G A 0.34 8 × 10−11 22.0 5 RSPO2 Left cerebellum cortex 
(rs601558, 1.00)

 rs36045050 chr14:69257858 T C 0.26 8 × 10−09 7.0 2b ZFP36L1 Cerebellum white matter 
(right: rs1547050, 0.74; 
left: rs12435718, 0.73)

﻿rs4646626﻿ chr15:58256127 T C 0.46 6 × 10−15 19.7 NA ALDH1A2 Brain stem (rs1061278, 
0.91); cerebellum cortex 
(right: rs3742960, 0.92; 
left: rs3742959, 0.92)

 rs1877031 chr17:37814080 A G 0.33 1 × 10−06 23.1 NA STARD3 Brain stem  
(rs2271308, 0.80)

 rs1058808 chr17:37884037 G C 0.33 1 × 10−07 23.5 5 ERBB2 Brain stem  
(rs2271308, 0.64)

 rs12949256 chr17:43507297 T C 0.19 1 × 10−08 15.0 4 ARHGAP27 Brain stem  
(rs568589031, 0.70)

﻿rs16940674﻿ chr17:43910507 T C 0.24 1 × 10−13 17.6 1f CRHR1 Brain stem  
(rs568589031, 0.96)

﻿rs16940681﻿ chr17:43912159 C G 0.24 1 × 10−13 5.0 4 CRHR1 Brain stem  
(rs568589031, 0.96)

﻿rs62621252﻿ chr17:43922942 C T 0.24 6 × 10−14 6.3 5 SPPL2C Brain stem  
(rs568589031, 0.96)

﻿rs62054815﻿ chr17:43923266 A G 0.24 1 × 10−13 0.0 5 SPPL2C Brain stem  
(rs568589031, 0.96)

﻿rs12185233﻿ chr17:43923654 C G 0.24 5 × 10−14 23.5 1f SPPL2C Brain stem  
(rs568589031, 0.95)

﻿rs12185268﻿ chr17:43923683 G A 0.24 1 × 10−13 8.7 1f SPPL2C Brain stem  
(rs568589031, 0.96)

﻿rs12373123﻿ chr17:43924073 C T 0.24 1 × 10−13 23.3 1f SPPL2C Brain stem  
(rs568589031, 0.96)

(Continued)
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nominally significant in 19 and 20 structures (table S7). Apart from 
the pleiotropic rs13107325, the other two variants have so far only 
been linked to various brain shape–related traits such as volume, sur-
face area, and cortical thickness according to the GWAS catalog as 
implemented in LDtrait (table S9) (39). rs12146713 and rs13107325 
have also recently been linked to structural connectivity measures 
(40), which supports the notion that they have an overarching effect 
on brain structuring.

Gene mapping and gene enrichment analysis
We first annotated all SNPs passing quality control (QC) to 18383 
protein-coding genes using MAGMA (41) and calculated a P value 
for each gene by applying the SNP-wise mean model (see Materials 
and Methods). The brain stem stood out with 20 protein-coding 
genes being significantly associated with its shape in the gene-based 
analysis after Bonferroni correction for 22 brain structures and 
18,383 protein-coding genes [P < 0.05/(22 * 18,383)] (Fig. 4A). Here, 
CRHR1 showed the strongest signal (P = 5.2 × 10−15). This gene be-
longs to the extended MAPT locus mentioned above, which came up 
as generally highly significant and has, together with MAPT, which 
encodes for the microtubule-associated protein tau, often been asso-
ciated with neurodegenerative disorders (42, 43).

Next, we used PoPS (44) for gene prioritization, a tool that assigns 
polygenic priority scores to each gene by fitting their MAGMA z-
scores based on trait-relevant gene features extracted from cell type–
specific gene expressions, biological pathways, and protein-protein 
interactions. Because PoPS works best when combined with or-
thogonal methods, we also mapped each SNP to the nearest genes. 
Reranking the genes according to the mean of the two ranks that 
resulted from the two methods, we prioritized all genes with rank ≤ 2 
at each locus (see the Materials and Methods and table S10).

On the basis of these genes, a gene set enrichment analysis was 
conducted using FUMA’s Gene2Func method. For bilateral brain 
structures, the two gene sets were joined in this analysis because of 
similar genetic architectures on both sides (see above and Fig. 3). 
Afterward, the overlap and degree of overrepresentation of all pri-
oritized genes in predefined gene sets were examined (Figs. 4 to 6 
and fig. S5).

For the brain stem, Gene2Func identified gene sets linked to mul-
tiple biological processes listed in the Gene Ontology (GO) Resource, 
which are involved in cell and nervous system development and regu-
lation (Fig. 4B). Gene sets were also linked to brain morphology and 
lung function according to the GWAS catalog (Fig. 5A). Moreover, 
brain stem shape–related genes were enriched among genes differen-
tially expressed in early infancy brain tissue (fig. S6).

At the locus of the most significant SNP in this study, rs13107325, 
two genes were usually prioritized, BANK1 and SLC39A8 (table S10). 
The previously known pleiotropy of this genomic region was con-
firmed by the diversity of our enrichment results, which included 
adventurousness, hypertension (HT), multisite chronic pain, general 
cognitive ability, and alcohol consumption (Fig. 6). In particular, the 
overlap with alcohol consumption was prominent.

Together with 23 other genes, these two genes were also prioritized 
in the case of cerebellum white matter. However, as a result of the 
larger number and variety of genes, the overlap of BANK1 and 
SLC39A8 with GWAS catalog gene sets remained above the signifi-
cance threshold. Instead, the other genes, primarily prioritized in the 
case of cerebellar white matter, caused enrichments for several regu-
latory pathways of GO biological processes associated with neuro-
logical and developmental processes (Fig. 5B). Genes prioritized for 
hippocampus shape revealed a complete overlap with genes associ-
ated with its fissure but only a partial overlap with its total volume 

rsID Position EA NEA EAF MinP CADD RDB Gene Brain structure  
(IndSigSNP, r2)

﻿rs12373139﻿ chr17:43924130 A G 0.24 1 × 10−13 4.0 1f SPPL2C Brain stem  
(rs568589031, 0.96)

﻿rs12373142﻿ chr17:43924200 G C 0.24 7 × 10−13 7.5 1f SPPL2C Brain stem  
(rs568589031, 0.96)

﻿rs63750417﻿ chr17:44060775 T C 0.24 1 × 10−13 11.9 5 MAPT Brain stem  
(rs568589031, 0.96)

﻿rs62063786﻿ chr17:44061023 A G 0.24 9 × 10−14 7.9 5 MAPT Brain stem  
(rs568589031, 0.96)

﻿rs62063787﻿ chr17:44061036 C T 0.24 1 × 10−13 0.2 5 MAPT Brain stem  
(rs568589031, 0.96)

﻿rs17651549﻿ chr17:44061278 T C 0.24 1 × 10−13 26.8 1f MAPT Brain stem  
(rs568589031, 0.96)

﻿rs10445337﻿ chr17:44067400 C T 0.24 2 × 10−13 19.2 1f MAPT Brain stem  
(rs568589031, 0.96)

﻿rs62063857﻿ chr17:44076665 G A 0.24 1 × 10−13 1.5 7 STH Brain stem  
(rs568589031, 0.96)

﻿rs34579536﻿ chr17:44108906 G A 0.24 2 × 10−13 14.4 3a KANSL1 Brain stem  
(rs568589031, 0.96)

﻿rs34043286﻿ chr17:44117119 G A 0.24 1 × 10−13 21.0 4 KANSL1 Brain stem  
(rs568589031, 0.96)

 Table 1. (Continued)
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(<20%), reinforcing the validity and utility of our shape analysis 
(Fig. 5C).

Associations with polygenic risk scores
To investigate associations between brain-related traits and the LBS of 
individual brain structures, we extracted polygenic risk scores (PRSs) 
from UKB for Alzheimer’s disease (AD), bipolar disorder (BD), isch-
emic stroke (ISS), multiple sclerosis (MS), Parkinson’s disease (PD), 
and SCZ. Because of results of our gene set enrichment analyses (see 
above), we also included the PRS for alcohol use disorder (ALC) as 
available in the PGScatalog. Ten of the pairwise partial correlations 
(adjusted for covariates; see Materials and Methods) between the 
PRSs were significant (Bonferroni-corrected P < 0.05), most promi-
nently between SCZ and BD (Pearson’s r = 0.37, P < 1 × 10−300), ALC 
and SCZ (r = 0.12, P = 1.5 × 10−60), and ALC and BD (r = 0.09, 
P = 1.7 × 10−38) (tables S11 to S13).

Following Sha et al. (45), we performed canonical correlation 
analysis (CCA) between the LBS of each of the 22 brain structures 
and each of those PRSs (see Materials and Methods and table S14). 
Here, the CCA determined a linear combination of the eigenvalues 
of an LBS (i.e., the canonical variable), which correlates maximally 
with the PRS across all examined individuals. We found 31 signifi-
cant correlations after Benjamini-Hochberg (46) correction (P < 0.05) 
within each PRS, 11 of which also stayed significant after additional 
Bonferroni correction for six independent PRSs (two-level correc-
tion) and 6 of which survived an overall Bonferroni correction for 
22 * 6 tests (Fig. 7). As a balance between false discoveries and sen-
sitivity, we chose this two-level correction to further investigate as-
sociations between PRSs and brain structures. Significant correlations 
ranged from 0.065 to 0.080 (mean, 0.070). While we found several 
highly significant correlations with various brain structures for ISS 
and SCZ, the polygenetic risk for BD and PD did not correlate with 
any brain shape at all. This is particularly notable because the PRS of 
BD and SCZ had substantial correlation (see above). The PRSs of 
AD, ALC, and MS indicated only suggestive correlations with LBSs. 
Empirical significance testing using 100,000 permutations of sample 

IDs for each pair of PRS and brain structure resulted in the same 
pattern of significant correlations (fig. S7).

To interpret these findings at the level of the eigenvalues, we cal-
culated the mean loadings in each CCA and counted the number of 
negative and positive values (table S15). We noticed that in some re-
sults, it was possible to assess a common direction of effects. Among 
all significant results, the right ventral diencephalon (DC) revealed 
the strongest (i.e., largest absolute) mean loading of −0.295 with 96% 
of all eigenvalues having a negative correlation with the canonical 
variable and, in the case of a common direction, with the PRS of 
SCZ. This finding suggested that a person may have a higher genetic 
risk for SCZ if the right ventral DC is shaped in such a way that its 
eigenvalues (frequencies) are lower. This, for example, can be the 
case for a smoother surface or a less curved shape. A similar deduc-
tion in the case of brain stem suggested that a less smooth or more 
curved shape shows a higher risk for ISS (mean loading of 0.186 with 
~92% loadings positive). Although most correlations remained above 
the significance threshold, clustering of the mean loadings showed 
similar tendencies for both hemispheres, suggesting no asymmetric 
behavior (fig. S8).

Heritability
We used SCORE (47) to estimate the univariate heritability of each 
eigenvalue, which uses the individual genotype data similar to the 
analysis by Ge et al. (6). We also calculated the multidimensional 
heritability (see Materials and Methods) (6) for each brain structure 
(Table 2 and table S16). Overall, the multidimensional heritability of 
the LBS was significant for all examined brain structures {Bonferroni 
corrected for 22 structures; range h2 : [9.5%, 29.6%]; mean ± SD = 
17.2 ± 5.6%}. The highest heritability was found for the caudate (left: 
29.6%; right: 27.3%) as well as for the brain stem (28.2%). We fur-
ther computed the multidimensional LBS heritability for combined 
structures to compare them with the results from Ge et al. (Table 2 
and fig. S9) and found a positive linear correlation (Pearson’s r = 0.735, 
P = 0.038). However, Spearman’s ρ did not reach statistical signifi-
cance ( ρ = 0.714, P = 0.058), suggesting a nonmonotonic relation-
ship. Excluding the fourth ventricle, which may be an outlier in the 
study of Ge et al. because of its large standard error and very low 
heritability, both results affirm a significant correlation (r = 0.844, 
P = 0.017, and ρ = 0.786, P = 0.048). We further conducted a Wald 
test for different heritability in each combined brain structure with 
H0: h

2 = h2
Ge

 , which could not be rejected at a 0.05 significance thresh-
old for any of the structures (see Materials and Methods and table S17), 
implying that our heritability estimates do not differ significantly from 
those of Ge et al.

Replication
On the 20% replication sample (N = 4961), we performed a replica-
tion analysis of the 80 independent SNPs (see Materials and Methods). 
For each brain structure, we only investigated those variants of the 
80 SNPs that had also shown Bonferroni-corrected genome-wide 
significance in the respective discovery GWAS. We replicated 51.4% 
(76 of 148) of all significant associations of these 80 SNPs at a 0.05 
significance level after false discovery rate (FDR) correction and 60.8% 
(90 of 148) at the nominal significance level (table S18). Hence, using a 
similar replication sample size, van der Meer et al. (2), who intro-
duced MOSTest in their study on brain volumes, replicated 33% 
fewer signals than we did.
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Fig. 3. PCA of −log10-scaled P values of the 80 independent significant SNPs 
across all structures. The first two PCs are plotted along the axes, while the third 
PC is color coded. Percentages in parentheses indicate the corresponding ex-
plained variances.
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We further checked all 148 significant associations of independent 
SNPs with brain structures and their replication P values with respect 
to their novelty in brain shape–related GWASs. Thirty-one of 80 in-
dependent SNPs across all brain structures have not been previously 
associated with any brain shape–related trait (see the “Multivari-
ate genome-wide analyses” section). Among the 148 independent 
significant SNP brain structure associations, these 31 SNPs were 
involved in 36 associations. A total of 30.5% (11 of 36) of these 

associations replicated after FDR correction at a significance thresh-
old of 0.05, whereas 50.0% (18 of 36) replicated at the nominal sig-
nificance threshold (P < 0.05). Among the other 112 associations, 
already associated with brain shape–related traits, we replicated 58.0% 
(65 of 112) and 64.3% (72 of 112), respectively. Fisher’s test showed a 
nonsignificant difference (P = 0.169) of nominal replication rates be-
tween novel and already reported genetic associations and a signifi-
cant difference (P = 0.007) of the FDR-corrected replication rates. We 
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Fig. 4. Gene analysis and enrichment in the brain stem. (A) Manhattan plot of MAGMA gene analysis of brain stem results using the SNP-wise mean model with cor-
rected and noncorrected gene-wide significant thresholds [P = 0.05/(22 * 18,383) (red line) and P = 0.05/18,383 (blue line)]. (B) Hypergeometric tests of overrepresenta-
tion and overlap of prioritized genes with predefined gene sets (GO biological processes from MsigDB c5) using FUMA Gene2Func. P values were corrected by the 
Benjamini-Hochberg method for multiple testing.
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assume that Winner’s Curse (48) is an important explanation for this 
difference. However, the replication rate of the novel GWAS signals 
is still within the range observed in other studies on the genetics of 
brain structures (9).

To assess what can be expected as replication rate, we performed 
four age- and sex-stratified random splits of our discovery set into 
sample sizes of 80% (~15,000) and 20% (~4000) each and performed 
GWAS again for all brain structures in each of the four 80% samples. 
Applying the same significance threshold as in our original GWAS 
(P < 1/22 * 5 × 10−8), we replicated between 55.6 and 69.6% of 
all independent significant signals in all brain structures (mean ± 
SD = 62.9 ± 5.9%) at the nominal significance level (P < 0.05) and 
between 48.1 and 62.3% (mean ± SD = 56.5 ± 6.5%) at a 0.05 sig-
nificance level after FDR correction in the respective 20% sample 
(table S19). In view of the fact that replication rates of GWASs usu-
ally are much lower than expected by power analysis (48% observed 
versus 91% expected), even after correction for Winner’s Curse (48% 
versus 54%) (48), this simulation showed that our actual replication 
rate in a set of independent individuals was in keeping with the size 
of that set.

Robustness analysis
Because MRI measurements of the brain stem can be influenced by 
the height of the individual, we conducted the MOSTest analysis 
again with height as an additional covariate (fig. S10 and table S20). 
We replicated 35 of 37 independent significant SNPs at the Bonferroni-
corrected genome-wide significance threshold (P < 2.27 × 10−9) and 

all 37 at the genome-wide significance threshold (P < 5 × 10−8). All of 
them were significant after FDR correction at the 0.05 threshold.

Outliers may emerge in any standardized neuroimaging data 
analysis pipeline. Therefore, we reanalyzed after removal of LBS out-
liers (see the Supplementary Materials). Small fluctuations in P values 
occurred with 10 of 148 associations showing a small increase, 
but all associations remained below the genome-wide significance 
threshold of 5 × 10−8 (table S7 and fig. S11). Similarly, the reanalysis 
of the CCA after outlier removal did not show any qualitative dif-
ferences (fig. S12).

DISCUSSION
Examining the complex relationship among brain morphology, ge-
netics, and neurological disorders is crucial for unravelling the un-
derlying causes and enhancing our understanding of the anatomy of 
the human brain and diseases. The Laplace-Beltrami operator pro-
vides a useful spectral representation for describing shape charac-
teristics. Adequately describing curvatures and being an informative 
topological fingerprint of the shape (15), the LBS captures more in-
formation compared to global shape quantities such as surface area 
or volume. Specifically, it captures local shape effects but still repre-
sents the whole form of an object because the respective eigenmodes 
are defined everywhere on the structure. Furthermore, the shape is 
described by a relatively small number of values, which simplifies 
data handling. Unlike other dimensionality reduction methods, such 
as PC analysis, it still preserves spatial interpretability. Also, it does 
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Fig. 5. Gene set enrichment results of selected brain structures. Significance of overrepresentation and overlap of prioritized genes with trait-associated gene sets 
from the GWAS catalog (A and C) and from GO biological processes (B) using hypergeometric tests. The figure displays results for selected brain structures, which stood 
out in the PCA (Fig. 3). All other structures can be found in Fig. 6 and in the Supplementary Materials (fig. S5). P values were corrected for multiple testing in each catego-
ry by the Benjamini-Hochberg method.
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not depend on error-prone interindividual image registration, which 
is required by other methods. Using the LBS thus allowed us to spe-
cifically address the variation in shape independent of volume or 
surface area and to disentangle the genetics of morphology beyond 
those global properties. While the eigenmodes and their potential to 
explain shape-associated biological mechanisms have been recently 
explored (22), the eigenvalues were previously found to have consid-
erable heritability in the case of subcortical brain structures and cer-
ebellum (6). However, neither the genetic architecture at SNP level 
of the shape of brain structures nor possible relations to disease ge-
netics have been investigated yet. Using state-of-the-art GWAS and 
the LBS (a set of eigenvalues) as a multidimensional phenotype, we 

have dissected the genetics of the shape of 22 brain structures in 
19,862 White-British individuals from the UKB.

Overall, we identified 148 significant SNP associations that were 
independent in their respective GWAS. Because some SNPs were 
significantly associated with more than one brain structure, this re-
sulted in 80 unique significant SNPs being independent across the 
22 GWASs. Most of them, particularly the most significant ones, 
were detected in association with structures in the posterior fossa 
(brain stem and cerebellum). In contrast, we found no significant 
signal for the LBS of the amygdala. Because of the simple almond-like 
shape, crude measures like volume and surface area might already 
capture amygdala’s shape well enough (Supplementary Materials, 
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Fig. 6. Gene set enrichment results of brain structures with BANK1 and SLC39A8 as prioritized genes. Significance of overrepresentation and overlap of prioritized 
genes with trait-associated gene sets from the GWAS catalog using hypergeometric tests. P values were corrected for multiple testing in each category by the Benjamini-
Hochberg method.
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table S21). This could possibly explain the lack of genetic signal in 
our study because we controlled for both volume and surface area.

Of those 80 SNPs, 37 have previously been reported as genome-
wide significant in a large GWAS on subcortical volumes (2), while 
4 were identified in a large GWAS meta-analysis on total brain vol-
ume (1). This overlap with volume-associated SNPs suggests pleio-
tropic effects of the respective gene loci, affecting both volume and 
shape characteristics independent of volume, while it is unlikely that 
pure volume associations were picked because we controlled for vol-
ume. Our hippocampus LBS GWAS, for instance, replicated 100% of 
all loci previously associated with hippocampal fissure size (49), 
which obviously influences hippocampal shape, while accounting 
for only 20% of the loci associated with total hippocampal volume 
(Fig. 5C).

Thirty-one of the 80 independent SNPs were not associated with 
any brain shape–related trait according to the GWAS catalog, neither 
by themselves nor by any variant in LD with them 

(

r2≥0.6
)

 , and 18 
were not listed at all (table S1). This shows a substantial degree of 
novelty, that is, undiscovered genetic effects specific to the shape of 
brain structures, and supports the notion of SNPs affecting the de-
velopment of form independent of growth.

Using a 15 times larger sample size, we were able to substantially 
refine the LBS SNP heritability estimates of subcortical brain struc-
tures, including the cerebellum, previously provided by Ge et al. (6) 
(N = 1320). While their estimates ranged from 0.005 to 0.5, some 
being nonsignificant because of large standard errors of 0.12 to 0.21, 
our estimates were between 0.1 and 0.3, all being significant with 
much lower standard errors ( ≤0.005). Statistical tests implied that 

our heritability estimates did not differ significantly from those of 
Ge et al. This was likely due to the much larger standard errors of 
their estimates but may also be a consequence of the younger age 
span in their cohort (18 to 35 years). Overall, we achieved results 
with higher statistical significance corresponding to our larger sam-
ple size and also likely due to our additional control for total brain 
volume, the respective local surface area, and MRI scan quality. The 
refined estimates were approximately equal to the SNP heritability 
of volumetric traits of subcortical structures that Hibar et al. (3) de-
rived from similar sample sizes or even larger as in the case of cau-
date, hippocampus, and putamen, for which they derived an SNP 
heritability of about 0.11 with 95% CI < 0.16 each, while we found 
values of 0.29, 0.20, and 0.18, respectively.

Bilateral structures showed similar genetic architecture of LBS 
(Fig. 3), which could be expected because of their symmetry. More-
over, genetic architecture was also shared between structures, as 
suggested by their adjacent positions, e.g., in the case of the basal 
ganglia. The two noticeably frequently shared variants rs13107325 
and rs12146713 on SLC39A8 and NUAK1, respectively, seem to af-
fect brain shape globally as they have recently been associated with 
the structural connectome (40). While SLC39A8, as a brain metal 
transporter, is involved in several brain and neurodevelopmental 
traits (see below), NUAK1 is also known to regulate axon branching 
by controlling mitochondrial distribution (50). The genetic associa-
tions of cerebellum and brain stem LBS were more different. The brain 
stem stood out because of a high number of specific association sig-
nals. These included the ExNS variant rs1687225 in VWA5B2, the 
gene of von Willebrand factor A domain containing protein 5B2. This 
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Fig. 7. P values of CCA results of various PRSs with different brain structures. Bar charts show the −log10-scaled P values of the correlations between PRSs and LBS of 
different brain structures at different significance thresholds: Bonferroni-corrected for 22 brain structures and 6 independent PRS (red line), FDR-corrected within each PRS 
(black line), and FDR-corrected within each PRS + Bonferroni-corrected for six independent PRS (blue line). Above significant P values, the correlation value is stated. For 
bilateral structures, the two results are displayed next to each other, with the left-side result (“l.”) on the left.
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missense variant belongs to the 3% most deleterious variants (ac-
cording to the CADD score) and was also an independent brain 
cis-eQTL of VWA5B2 according to GTEx (version 8). Proxy vari-
ants of rs1687225 have been reported as being associated with brain 
morphology (2), cortical thickness (51), and educational achieve-
ment (52).

An extended genomic risk locus on chromosome 17 with lead 
SNP rs568589031 was also rather specific for the brain stem. ExNS 
variant rs17651549 at this locus had the highest CADD score (26.8) 
of all variants in LD with any of the independent significant SNPs. 
It affects MAPT, which was among the most significant signals in 
MAGMA gene-based analysis of the brain stem LBS. However, this 
locus contains multiple protein-coding genes with several brain 
cis-eQTLs affecting them and other genes in the region (table S6). 
The analysis of this large locus is highly challenging. The locus has 
previously been mapped to brain morphology (2) and several neu-
rodegenerative diseases such as progressive supranuclear palsy, 
corticobasal degeneration, frontotemporal dementia, PD, and AD 
(42, 43, 53–62). Moreover, variations in cortical morphology have 

recently been linked to APOE ε4 and MAPT in young healthy adults 
(63). There is also evidence of brain stem deformations in early stag-
es of AD manifesting as variations in the midbrain (64), decreased 
locus coeruleus (part of the brain stem) volume preceding neuronal 
loss (65), and neurofibrillary tangle–related neurodegeneration in 
the brain stem potentially causing neuropsychiatric symptoms (66). 
While patients with diagnosed neurodegeneration were excluded 
from our study, the possibility remains that preclinical stages might 
potentially mediate the genetic relation between shape and the 
MAPT locus. However, neither gene enrichment analysis (Figs. 4 
to 6) nor CCA (Fig. 7), as an enrichment analysis independent of 
candidate genes, did provide evidence for a significant correlation 
between the genetics or phenotype of brain stem LBS and the genetics, 
respectively the PRS, of neurodegeneration such as AD.

At this locus, significant ExNS SNPs with high CADD scores were 
also found in SPPL2C, KANSL1, and CRHR1, which showed the 
strongest signal in the MAGMA analysis (Table 1 and Fig. 4A). Loss-
of-function variants of KANSL1 are known for causing autosomal-
dominant Koolen-de-Vries syndrome (MIM no. 610443) which is 

Table 2. Heritability estimates of different brain structures. Heritability estimates are presented for single brain structures ( h2 ) and for combined regions  
( h2 combined) as well as their standard errors (SE and SE combined). Here, numbers in bold are significant after Bonferroni correction for 22 brain structures. For 
comparison, the estimates from Ge et al. (6) are listed in the last two columns. Italic numbers are nominally significant, and bold ones are significant after false 
discovery rate correction in (6).

Brain structure h
2 SE h

2 combined SE combined h
2 Ge2016 SE Ge2016

 4th ventricle 0.169 3.0 × 10−3 0.169 3.0 × 10−3 0.005 0.208

Left accumbens area 0.134 2.8 × 10−3

0.116 1.9 × 10−3 0.237 0.135
 Right accumbens area 0.095 2.4 × 10−3

Left amygdala 0.105 2.5 × 10−3

0.118 1.8 × 10−3 – –
 Right amygdala 0.134 2.8 × 10−3

Left caudate 0.296 1.9 × 10−3

0.285 1.4 × 10−3 0.499 0.188
 Right caudate 0.273 2.0 × 10−3

 Brain stem 0.282 5.4 × 10−3

0.198 1.5 × 10−3 0.452 0.192

Left cerebellum cortex 0.186 2.9 × 10−3

 Right cerebellum 
cortex

0.194 2.8 × 10−3

Left cerebellum white 
matter

0.195 2.6 × 10−3

 Right cerebellum 
white matter

0.148 2.6 × 10−3

Left hippocampus 0.187 2.6 × 10−3

0.199 1.9 × 10−3 0.347 0.169
 Right hippocampus 0.210 2.7 × 10−3

Left pallidum 0.124 2.9 × 10−3

0.122 2.0 × 10−3 0.061 0.117
 Right pallidum 0.120 2.8 × 10−3

Left putamen 0.158 2.7 × 10−3

0.183 1.9 × 10−3 0.413 0.148
 Right putamen 0.210 2.8 × 10−3

Left thalamus proper 0.134 2.7 × 10−3

0.132 1.9 × 10−3 0.086 0.143
 Right thalamus proper 0.130 2.7 × 10−3

Left ventral DC 0.122 2.7 × 10−3

0.146 2.1 × 10−3 – –
 Right ventral DC 0.169 3.2 × 10−3
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characterized by intellectual disability and structural brain abnormal-
ities (67). SPPL2C is the gene of signal peptide peptidase–like 2C and 
has previously been highlighted in a GWAS on total brain volume 
because of a relatively large number of ExNS variants (1). However, 
we controlled for volume in our GWAS on brain shape. A recent study 
found that CRHR1, which encodes a receptor for the corticotropin-
releasing hormone CRH, moderates brain volume differences, possi-
bly through its stress response function, which in return mediates the 
relationship between urban environmental exposure and affective 
symptoms (68). In particular, in the context of CRHR1, lower brain 
volume was observed in relation to stronger affective symptoms and 
greater urban environment exposure. Variants of CRHR1 have further 
been associated with alcohol (69) and heavy alcohol consumption 
following stressful life (70). Even light alcohol consumption has re-
cently been related to changes in brain structure (71). Genes associ-
ated with the LBS of several other brain structures were enriched in 
gene sets associated with alcohol consumption (Fig. 6). Thus, alcohol 
consumption may be a potential mediator of their effect on brain 
shape. However, we would like to note that the enrichment was driven 
by one locus.

That locus on chromosome 4 with lead SNP rs13107325, an ExNS 
variant of SLC39A8, not only appeared to be significant in most brain 
structures (15 structures including the brain stem, albeit with a sub-
threshold significance) but also revealed the overall strongest signal 
across all the GWASs in left cerebellum white matter. This locus, 
especially the lead SNP, has a pleiotropic effect. Besides alcohol con-
sumption (72), it has been linked to SCZ (33–35), Crohn’s disease 
(36), blood pressure and cardiovascular disease risk (37), and several 
brain imaging phenotypes (9). The cerebellothalamic and cerebellar-
basal ganglia connectivity dysfunction hypothesis in individuals 
with SCZ is supported by the significant and prominent occurrence 
of rs13107325 in precisely these regions (73, 74). SCZ is known to be 
associated with abnormalities of subcortical brain structures (75–77). 
Clinical features of SCZ might be due to aberration of dendritic spine 
density (78). A knockin mouse model of rs13107325 points to an 
increased risk of SCZ by regulating zinc transport and dendritic spine 
density and subtle effects on cortical development because of this vari-
ant (79). A recent gene mapping study concluded strong evidence for 
pleiotropic genes associated with SCZ and brain structure with evi-
dence of brain variation causing SCZ (80).

SCZ shows substantial genetic correlation (0.68) with BD (81), 
which was also evident in the correlation (0.37) between their PRSs. 
However, BD seems to have less relation to brain morphology. 
Madre et al. (82) investigated cortical morphology in individuals 
with SCZ and BD and reported shared volume and thickness defi-
cits, while abnormalities of geometry and curvature were specific to 
SCZ. Also, Stauffer et al. (80) reported the association of MRI met-
rics to be weaker with BD genetics than with SCZ genetics. Our re-
sults are in line with these findings as CCA revealed correlation of 
the LBS of several brain structures only with the SCZ-PRS, while 
there was no correlation with BD-PRS (Fig. 7). This result suggests 
that LBS may therefore be sensitive to SCZ-specific brain shape vari-
ations and thus potentially helpful for the differential diagnosis of 
psychosis.

CCA also revealed highly significant links between the LBS of 
multiple brain structures and the PRS of ISS in our healthy cohort 
(Fig. 7). In line with the high correlation between ISS-PRS and HT-
PRS, CCA produced a very similar result for the HT-PRS (fig. S13). 
HT is associated with white matter hyperintensities and cognitive 

dysfunction in elderly patients and is a major risk factor for ISS (83). 
A recent study showed that morphological changes in the basal gan-
glia and thalamus already occurring in midlife are associated with 
blood pressure and, therefore, might be better markers of early HT 
than volume aberrations (84). Our CCA results were especially sig-
nificant in these brain regions, which in turn support the suggestion 
of using brain morphology or shape as an early biomarker of HT.

Limitations of our study include the lack of effect sizes (β values) 
in our multivariate results, which impedes the use of conventional 
post-GWAS tools such as genetic correlation and Mendelian random-
ization analyses. Instead, we explored the relationship to genetics of 
other traits by performing CCA between LBSs and PRSs. This was 
limited by the predictive power of each PRS. Furthermore, we could 
not establish the causal relationship between genetic variation in brain 
morphology and a particular trait or disease. Restricting our study 
to healthy individuals may additionally have yielded lower effect sizes 
and potentially false negative correlations when performing disease-
related analyses. Also, we did not yet address the cortex, a brain 
structure that relates to a plentitude of neurophysiological and neu-
ropsychiatric phenomena. A follow-up study on the shape of the cortex 
and its subregions may provide further insights.

In summary, we have delineated the genetic architecture of brain 
shapes beyond global measurements such as volume and surface 
area by using the LBS as a mathematical shape descriptor. In our 
multivariate GWAS on a large healthy cohort of the UKB, we identi-
fied 80 unique independent SNPs with brain stem showing a distinctly 
high number of specific association signals, which included the MAPT 
locus implicated in neurodegenerative diseases. The shapes of most 
brain structures were significantly associated with the pleiotropic 
variant rs13107325, a known risk factor for SCZ. We further identi-
fied significant correlations between brain shape and PRSs of SCZ, 
HT, and ISS, suggesting the potential use of the LBS as an early disease 
biomarker. As such, the LBS expands the set of tools for investigat-
ing brain shapes, holding implications for early detection of a 
wide spectrum of traits, and warrants further research in disease-
specific cohorts.

MATERIALS AND METHODS
UKB data and sample filtering
Data were retrieved from the official source of the UKB (application 
number 41655) and provided as a DataLad dataset, a research data 
management solution providing data versioning, data transport, and 
provenance capture (85). UKB has ethical approval from the Northwest 
Multi-Centre Research Ethics Committee (REC reference: 21/NW/0157), 
and all participants have provided written informed consent. A total 
of 487,409 genotyped samples was available (v3 imputed on Haplo-
type Reference Consortium and UK10K haplotype data, aligned to 
the + strand of the reference and GRCh37 coordinates, released 
in 2018, data field 22828). We kept only self-reported White-British 
individuals for data homogeneity according to data field 21000, re-
sulting in 430,560 individuals. After genetic QC (see below), there 
were 393,913 unrelated samples left. A total of 30,080 of them had 
structural MRI data (T1) on which we calculated the LBS (see 
below) of 22 brain structures (Fig. 1) of 24,834 individuals without 
mental or behavioral disorders (ICD index F) or diseases of the ner-
vous system (ICD index G) according to the International Statistical 
Classification of Diseases and Related Health Problems 10th revi-
sion (ICD-10).
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We created age- and sex-stratified discovery and replication sam-
ples by splitting the data into two subsets comprising 80 and 20% of 
the individuals, respectively. Excluding samples without total brain 
volume data (see below), our final dataset for our discovery GWAS 
contained 19,862 individuals, 9435 male and 10,427 female, ranging 
in age between 46.0 and 81.7 years with a mean ± SD of 64.3 ± 7.4 
years (female: 63.6 ± 7.3; male: 65.0 ± 7.5).

QC of genetic data
We conducted QC using Plink2 (version: 26 August 2021) whenever 
possible and Plink (version 1.9, 6 June 2021) for some missing func-
tionalities on all self-reported White-British individuals and their 
imputed genotype data. For this purpose, the data records were first 
converted from BGEN to binary Plink2 format, and only SNPs were 
kept for further analyses. As recommended by UKB (86), we removed 
variants with an imputation score less than 0.3, and following Mills et al. 
(87), we excluded all variants with a call rate less than 0.95, a minor allele 
frequency of less than 0.01, and a Hardy-Weinberg equilibrium exact 
test P value below 1 × 10−6. As recommended by Plink2, we used the 
mid-P adjustment to reduce the filter’s tendency to retain variants with 
missing data (88) and the keep-fewhet modifier. We also removed 
samples with a mismatch between self-reported and genetically 
inferred sex, with genotype missingness of more than 0.05, and all 
heterozygosity outliers ( ± 3 SD). Moreover, using a kinship coefficient 
of 0.088 and the king-cutoff command, we randomly excluded one 
from each pair of individuals related to greater than or equal to second 
degree. Only autosomal SNPs were examined. In total, 8,105,763 SNPs 
remained after QC. We calculated the first 10 PCs from them, which 
were included as covariates in the GWASs.

Image data processing
First, we segmented anatomical structures from all available T1 MRI 
brain scans with FreeSurfer version 7.2.0 (89–93). Second, we created 
triangular meshes for all structures of interest. Last, we computed 
compact shape representations for all structures using the BrainPrint 
Python package (21) (see below). To account for the quality of the 
MRI scans, we computed the Euler number with FreeSurfer. This 
represents the total defect index and is a measurement of the number 
of holes in the calculated surface.

Multidimensional shape descriptor
A shape, parameterized as a Riemannian manifold M , may be de-
scribed by its intrinsic geometric information, which can be obtained 
by solving the Helmholtz equation on that manifold

where Δ is the Laplace-Beltrami operator, a generalization of the 
Laplace operator in Euclidean space; and f  is a real-valued function, 
with f ∈ C2 , defined on M . The solutions 

(

fi, λi
)

 represent the spa-
tial part of the wave equation with eigenfunctions fi and eigenvalues 
λi where 

√

λi  can be interpreted as the natural frequencies. The set of 
all eigenvalues is called the spectrum of an operator. The LBS or Shape-
DNA (13) is accordingly defined as the beginning subsequence of the 
increasingly ordered spectrum of the Laplace-Beltrami operator solved 
on a Riemannian manifold

The LBS was computed with the BrainPrint package (21) based 
on the FreeSurfer output. For each individual, we calculated the 

first, i.e., the smallest, 50 eigenvalues of each brain structure as done 
in (6). Because the first eigenvalue is always zero, since each object is 
a closed surface without a boundary, we used only the next 49 values 
in our analyses. Each eigenvalue λi,m was further normalized to vol-
ume Vi of each brain structure i . The volume and surface area were 
calculated by BrainPrint. Afterward, λi,m was divided by its position 
m in the ordered spectrum to balance out the higher eigenvalues, 
which more likely represent noise (6, 13, 21)

In the end, we analyzed 22 brain structures as provided by Free-
Surfer: 4th ventricle, brain stem, accumbens area (left and right), 
amygdala (left and right), caudate (left and right), cerebellum cortex 
(left and right), cerebellum white matter (left and right), hippocampus 
(left and right), pallidum (left and right), putamen (left and right), 
thalamus proper (left and right), and ventral DC (left and right). By 
that, we handled the normalized and reweighted LBS 

{

λi,2, … , λi,50
}

 
for each brain structure i as a 49-dimensional quantitative trait.

Multivariate genome-wide association analysis
For our multivariate GWAS, we used the MOSTest tool, a multivari-
ate omnibus test, which handles big data efficiently and accounts for 
the correlation among the phenotypes to increase statistical power 
(2). Because the eigenvalues are not independent in general {Pearson 
correlation range: [0.285;0.998]; mean ± SD = 0.93 ± 0.06; figs. S14 
to S16}, we conducted, for each brain structure i  , a multivari-
ate GWAS on the 49 volume-normalized and scaled eigenvalues 
λ
i,m,m ∈ {2, … , 50} , treating each λi,m as a single quantitative 

phenotype. For that, we first calculated residuals of the multidimen-
sional phenotype to control for potential covariates as recommended 
by MOSTest, i.e., we regressed each λi,m on age, age2 , sex, first 10 
genetic PCs, Euler number, surface area of each brain structure i , 
and the total brain volume. The latter was calculated as the sum of 
the volume of ventricular cerebrospinal fluid (data field 25004) and 
the gray and white matter volume (data field 25010) in line with 
Jansen et al. (1). Normalizing the LBS to volume as described above 
and regressing out total brain volume and surface area of each brain 
structure assured that we studied the shape and not linear size effects. 
We defined the residualized eigenvalues λ̃i,m as the sum of the esti-
mated intercept and the residuals of its linear regression. After ad-
justing for covariates, the range of absolute correlations between all 
λ̃i,m values was quite high {Pearson correlation range: [0;0.978]; mean 
± SD = 0.65 ± 0.18; figs. S14 to S16}. We further inspected the relation 
of each λ̃i,m to volume and surface area by calculating their Pearson 
correlations. There was, as expected, no correlation with surface 
area and a low correlation with volume (mean ± SD = 0.27 ± 0.08) 
(fig. S17). The effect was small except for the eigenvalues of caudate, 
which showed mean correlations of 0.50 (left) and 0.46 (right) both 
with an SD of 0.05, likely relating to the long C-shaped form of that 
structure and by the fact that volume normalization (i.e., multiplica-
tion with V

2

3

i
 ; see above) excludes the pure size effects but not a 

real difference in shape. Including volume as an additional covari-
ate in the MOSTest analysis produced nevertheless similar results 
(table S22).

All λ̃i,m values were then passed to MOSTest, which first per-
forms a rank-based inverse-normal transformation (INT) to obtain 
normally distributed data. This is followed by a standard additive 
univariate GWAS for each λ̃i,m , resulting in z-scores for each SNP 

Δf = −λf

{λ1, … , λN} with 0 ≤ λi ≤ λj ∀ i < j

λ
i,m=

1

m

(

λ
i,m ⋅V

2

3

i

)

,∀i∈{1, … , 22},m∈{2, … , 50}
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and λ̃i,m . This procedure is repeated with once-permuted genotypes, 
preserving phenotype correlation. The MOSTest test statistic for an 
SNP is then calculated as the Mahalanobis norm of the nonpermut-
ed z-scores of that SNP and the correlation matrix R of the z-scores 
from once-permuted genotypes of all eigenvalues. The P value of the 
multivariate test statistic is then calculated from a cumulative distri-
bution function of a fitted gamma distribution, which eliminates the 
need for a multiple testing correction of 49 univariate GWASs and 
therefore allows to determine the significance of SNPs with a P value 
below the standard genome-wide threshold of 5 × 10−8. We further 
confirmed that MOSTest controlled the type I error sufficiently by 
plotting P values from empirical distributions of the test statistic and 
from fitted gamma functions under the null hypothesis as calculated 
by permutating the phenotype-genotype assignments (figs. S18 to S39).

Identification of genomic loci and functional annotations
For functional annotations, we used the web-based platform FUMA 
(version 1.5.6) (28). We used default settings to determine genomic 
risk loci. First, independent significant SNPs were identified as the 
ones with a P value equal to or smaller than 2.27 × 10−9 (Bonferroni 
correction for 22 brain structures: 1/22 * 5 × 10−8 = 2.27 × 10−9) 
and LD with other such SNPs in its vicinity of r2 < 0.6 . These SNPs 
and those in LD with them 

(

r2≥0.6
)

 were defined as candidate SNPs 
and used in subsequent analyses. LD computation was based on the 
European population within the 1000 Genomes reference panel 
(phase 3) (94). Those with r2 < 0.1 were classified as lead SNPs 
among the independent significant SNPs. Independent significant 
SNPs with r2 ≥ 0.1 or with a gap of less than 250 kb between their 
respective LD blocks (all SNPs in LD r2 ≥ 0.6 with them) were 
merged into one genomic risk locus. Therefore, a genomic risk locus 
can contain multiple independent significant SNPs.

Candidate SNPs were used for functional annotations. Positional 
annotation was performed with ANNOVAR (29). Furthermore, SNPs 
were annotated with CADD scores, RegulomeDB scores, and 15-core 
chromatin states. The major histocompatibility region was excluded 
from all annotations. For eQTL mapping, we checked several avail-
able databases containing relevant information, i.e., PsychENCODE 
eQTLs, ComminMind Consortium, BRAINEAC, and GTEx v8 
Brain, and extracted all significant SNP-gene pairs with an FDR 
[Benjamini-Hochberg procedure (46)]–controlled P value < 0.05 
within the respective database.

Gene mapping and gene enrichment analysis
For gene prioritization, we used PoPS (version 0.2) (44), a tool that 
assigns polygenic priority scores to each gene by fitting their MAGMA 
z-scores to trait-relevant gene features extracted from cell type–
specific gene expression, biological pathways, and protein-protein 
interactions. We calculated these z-scores using MAGMA (version 
1.10) (41) by first annotating SNPs to 18,383 protein-coding genes 
within a 0-kb window and afterward performing gene analysis using 
the SNP-wise mean model and the European population of 1000 
Genomes as a reference dataset for every brain structure. We then 
ran PoPS on our MAGMA scores using default settings and all avail-
able 57,543 gene features. Gene annotation and location files, as well 
as gene features, were taken from www.finucanelab.org/data.

Lead SNPs, as defined by FUMA (see above), were mapped to 
genes within a 500-kb window up- and downstream. We first selected 
the four genes with the highest PoPS score in each locus. Second, 
because it was shown that PoPS works best when combined with 

orthogonal methods like Nearest Gene, we mapped each lead SNP 
to the two closest genes. After assigning a rank to each gene by both 
methods and averaging the two ranks, we reranked the genes and 
lastly prioritized all genes with an average rank ≤ 2 for each indepen-
dent significant SNP.

The prioritized genes were given as input to the FUMAs Gene2Func 
tool. Genes of brain structures present in both hemispheres were 
joined in each analysis. We used all protein-coding genes of Ensem-
bl version 110. Hypergeometric tests analyzed the overrepresenta-
tion of mapped genes in precalculated gene sets followed by an FDR 
control (Benjamini-Hochberg, P < 0.05) within each category.

CCA with PRS
For the CCA, we extracted PRSs of six brain shape–related traits and 
disorders and that of one trait that stood out from the FUMA gene set 
results. Six PRSs were taken from the UKB, which have exclusively 
been trained on external datasets: AD (data field 26206), BD (data 
field 26214), ISS (data field 26248), MS (data field 26254), PD (data 
field 26260), and SCZ (data field 26275). Furthermore, we calculated 
the PRS for ALC based on the score definition from the PGScatalog 
(95) [PGS002738 (96)]. UKB data were not used for evaluating this 
last score but for one GWAS in the discovery meta-analysis of the ALC 
study. The data was available for 19,850 samples. Each PRS was first 
linearly regressed on age, age2 , sex, first 10 genetic PCs, and total brain 
volume. The residuals were added to the fitted intercept. Second, a 
rank-based INT was applied to those PRSs. The partial correlation be-
tween the PRSs was calculated as a Pearson correlation. We used the 
residualized eigenvalues λ̃i,m as they were used as input for MOSTest 
for each brain structure and applied a rank-based INT.

For each pair of PRS and brain structure, we conducted a CCA 
using the cca() function within the “yacca” R-package (version 1.4-2). 
CCA finds a linear combination of all eigenvalues, a so-called canonical 
variable, which correlates maximally with the PRS. All resulting P 
values of the correlations were adjusted for multiple testing using 
FDR. Afterward, we applied an additional Bonferroni correction for 
six effective PRSs, which we consider as the two-level correction. For 
comparison, we also calculated the Bonferroni correction for 22 * 6 
tests. All adjustments were made to the 0.05 significance threshold.

Furthermore, in each CCA, we investigated the loadings, i.e., the 
correlations of all eigenvalues with their canonical variable, which de-
scribe the direction and strength of the impact of each eigenvalue on 
the risk score. Out of those, we calculated the mean loading and the 
number of negative/positive loadings of all eigenvalues in each brain 
structure and PRS. If at least 90% of all loadings had the same direc-
tion, we deemed that as a common direction of effects. Hierarchical 
clusters were computed on the distances of mean loadings among 
brain structures and PRSs using the complete linkage method (fig. S8).

SNP-based heritability
Ge et al. investigated the heritability of neuroanatomical shape using 
the LBS. For estimating its SNP heritability, they proposed a multidi-
mensional approach where they summed the univariate heritability 
h2
m

 of the eigenvalues, each weighted by γm , the relative size of its 
phenotypic variance

h2 =
�

m
γmh

2
m
, with γm =

σ2
Pm

∑

kσ
2
Pk
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and σ2
Pm

 being the phenotypic variance of trait m . The univariate heri-
tabilities of the 49 eigenvalues were derived using SCORE. For com-
bined structures, we derived the multidimensional heritability from 
the union set of eigenvalues. When applying SCORE, we proceeded 
as with the GWAS described above using volume-normalized and 
reweighted eigenvalues and the same set of covariates. The pheno-
typic variance was also computed using the residualized eigenvalues 
λ̃i,m . We further calculated the P value of each heritability using the 
Wald test statistics, which is distributed as

with χ2
0
 being the point mass at 0 and χ2

1
 being the chi-squared dis-

tribution with one degree of freedom because the null hypothesis 
H0: h

2 = 0 lies on the boundary of a constrained parameter space 
( h2 ≥ 0 ) (97). The standard error (SE) of each multidimensional 
heritability was calculated using Bienayme’s identity for the variance 
of a sum and the univariate estimates from SCORE as follows

For testing the difference between heritability values in each com-
bined brain structure, we used the Wald test statistics distributed as

with

Because SE
(

h2
)

 is small in comparison to SE
(

h2
Ge

)

 , we can ap-
proximate SE

(

h2−h2
Ge

)2 by just SE
(

h2
Ge

)2.

Replication
Replication analysis was conducted on the 20% sample (see above). 
This encompassed 4963 individuals, of which 4961 (2605 female) 
had data of total brain volume available, ranging in age from 45.2 to 
81.8 years (age mean ± SD = 64.2 ± 7.4; female: 63.6 ± 7.2; male: 64.9 ± 
7.6). In these 4961 individuals, we performed MOSTest analyses of 
each brain structure using all SNPs that passed QC and the same 
procedure and set of covariates as in the discovery analysis. For each 
brain structure, we only investigated those variants of the 80 inde-
pendent SNPs that had shown Bonferroni-corrected genome-wide 
significance in the respective discovery GWAS. FDR correction was 
applied to these P values for each brain structure separately.

To find a range for the expected replication rate, we subdivided 
the original discovery dataset (19,862 individuals) four times into a 
set of 80% (~15,000 individuals) for discovery and a set of 20% 
(~4000 individuals) for replication. The splits corresponded to the 
relative size of our actual replication set and were done randomly 
while preserving equal age and sex distribution in discovery and 
replication sets. The GWAS on the 80% sets and the replication were 
done following the same methods, covariates, and significance thresh-
old as before. Replication rates were calculated on the set of signifi-
cant independent variants of each split and brain structure, obtained 
by Plink2 (version: 24 June 2024) by using the same clumping 

parameters as given to FUMA before (see the “Identification of 
genomic loci and functional annotations” section).
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