001041624 001__ 1041624
001041624 005__ 20250512115733.0
001041624 0247_ $$2doi$$a10.1103/PhysRevApplied.23.034022
001041624 0247_ $$2ISSN$$a2331-7019
001041624 0247_ $$2ISSN$$a2331-7043
001041624 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02353
001041624 0247_ $$2WOS$$aWOS:001469034100001
001041624 037__ $$aFZJ-2025-02353
001041624 041__ $$aEnglish
001041624 082__ $$a530
001041624 1001_ $$0P:(DE-Juel1)204481$$aJi, Yanjun$$b0$$ufzj
001041624 245__ $$aAlgorithm-oriented qubit mapping for variational quantum algorithms
001041624 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2025
001041624 3367_ $$2DRIVER$$aarticle
001041624 3367_ $$2DataCite$$aOutput Types/Journal article
001041624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745570112_4146
001041624 3367_ $$2BibTeX$$aARTICLE
001041624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041624 3367_ $$00$$2EndNote$$aJournal Article
001041624 520__ $$aQuantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity. In this paper we propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods by utilizing the inherent structure of algorithms. While exact methods provide optimal solutions, they become intractable for large circuits. Scalable methods, like swap networks, offer fast solutions but lack optimality. AOQMAP bridges this gap by leveraging algorithmic features and their association with specific device substructures to achieve depth-optimal and scalable solutions. The proposed strategy follows a two-stage approach. First, it maps circuits to subtopologies to meet connectivity constraints. Second, it identifies the optimal qubits for execution using a cost function and performs postselection among execution results across subtopologies. Notably, AOQMAP provides both scalable and optimal solutions for variational quantum algorithms with fully connected two-qubit interactions on common subtopologies including linear, T-, and H-shaped, minimizing circuit depth. Benchmarking experiments conducted on IBM quantum devices demonstrate significant reductions in gate count and circuit depth compared to Qiskit, Tket, and swap network. Specifically, AOQMAP achieves up to an 82% reduction in circuit depth and an average 138% increase in success probability. This scalable and algorithm-specific approach holds the potential to optimize a wider range of quantum algorithms.
001041624 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001041624 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041624 7001_ $$0P:(DE-HGF)0$$aChen, Xi$$b1
001041624 7001_ $$0P:(DE-HGF)0$$aPolian, Ilia$$b2
001041624 7001_ $$0P:(DE-HGF)0$$aBan, Yue$$b3
001041624 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.23.034022$$gVol. 23, no. 3, p. 034022$$n3$$p034022$$tPhysical review applied$$v23$$x2331-7019$$y2025
001041624 8564_ $$uhttps://juser.fz-juelich.de/record/1041624/files/PhysRevApplied.23.034022.pdf$$yOpenAccess
001041624 909CO $$ooai:juser.fz-juelich.de:1041624$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001041624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204481$$aForschungszentrum Jülich$$b0$$kFZJ
001041624 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001041624 9141_ $$y2025
001041624 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001041624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001041624 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001041624 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041624 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001041624 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001041624 920__ $$lyes
001041624 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001041624 980__ $$ajournal
001041624 980__ $$aVDB
001041624 980__ $$aUNRESTRICTED
001041624 980__ $$aI:(DE-Juel1)PGI-12-20200716
001041624 9801_ $$aAPC
001041624 9801_ $$aFullTexts