001041664 001__ 1041664 001041664 005__ 20250610131449.0 001041664 0247_ $$2doi$$a10.1093/biomethods/bpaf027 001041664 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02369 001041664 0247_ $$2pmid$$a40336971 001041664 0247_ $$2WOS$$aWOS:001483470400001 001041664 037__ $$aFZJ-2025-02369 001041664 041__ $$aEnglish 001041664 082__ $$a570 001041664 1001_ $$0P:(DE-Juel1)207602$$aAgarwal, Avinash$$b0$$eCorresponding author$$ufzj 001041664 245__ $$aAssessing nutritional pigment content of green and red leafy vegetables by image analysis: Catching the “red herring” of plant digital color processing via machine learning 001041664 260__ $$bOxford University Press$$c2025 001041664 3367_ $$2DRIVER$$aarticle 001041664 3367_ $$2DataCite$$aOutput Types/Journal article 001041664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747114074_30174 001041664 3367_ $$2BibTeX$$aARTICLE 001041664 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001041664 3367_ $$00$$2EndNote$$aJournal Article 001041664 520__ $$aEstimating pigment content of leafy vegetables via digital image analysis is a reliable method for high-throughput assessment of their nutritional value. However, the current leaf color analysis models developed using green-leaved plants fail to perform reliably while analyzing images of anthocyanin (Anth)-rich red-leaved varieties due to misleading or “red herring” trends. Hence, the present study explores the potential for machine learning (ML)-based estimation of nutritional pigment content for green and red leafy vegetables simultaneously using digital color features. For this, images of n = 320 samples from six types of leafy vegetables with varying pigment profiles were acquired using a smartphone camera, followed by extract-based estimation of chlorophyll (Chl), carotenoid (Car), and Anth. Subsequently, three ML methods, viz., Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were tested for predicting pigment contents using RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and L*a*b* (Lightness, Redness-greenness, Yellowness-blueness) datasets individually and in combination. Chl and Car contents were predicted most accurately using the combined colorimetric dataset via SVR (R2 = 0.738) and RFR (R2 = 0.573), respectively. Conversely, Anth content was predicted most accurately using SVR with HSV data (R2 = 0.818). While Chl and Car could be predicted reliably for green-leaved and Anth-rich samples, Anth could be estimated accurately only for Anth-rich samples due to Anth masking by Chl in green-leaved samples. Thus, the present findings demonstrate the scope of implementing ML-based leaf color analysis for assessing the nutritional pigment content of red and green leafy vegetables in tandem. 001041664 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0 001041664 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001041664 7001_ $$0P:(DE-HGF)0$$ade Jesus Colwell, Filipe$$b1 001041664 7001_ $$0P:(DE-HGF)0$$aCorrea Galvis, Viviana Andrea$$b2 001041664 7001_ $$0P:(DE-HGF)0$$aHill, Tom R.$$b3 001041664 7001_ $$0P:(DE-HGF)0$$aBoonham, Neil$$b4 001041664 7001_ $$0P:(DE-HGF)0$$aPrashar, Ankush$$b5$$eCorresponding author 001041664 773__ $$0PERI:(DE-600)2879161-7$$a10.1093/biomethods/bpaf027$$gp. bpaf027$$n1$$pbpaf027$$tBiology methods & protocols$$v10$$x2396-8923$$y2025 001041664 8564_ $$uhttps://juser.fz-juelich.de/record/1041664/files/bpaf027.pdf$$yOpenAccess 001041664 909CO $$ooai:juser.fz-juelich.de:1041664$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001041664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207602$$aForschungszentrum Jülich$$b0$$kFZJ 001041664 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 001041664 9141_ $$y2025 001041664 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL METHODS PROTOC : 2022$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:36:55Z 001041664 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:36:55Z 001041664 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001041664 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-13 001041664 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13 001041664 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001041664 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13 001041664 920__ $$lno 001041664 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 001041664 980__ $$ajournal 001041664 980__ $$aVDB 001041664 980__ $$aUNRESTRICTED 001041664 980__ $$aI:(DE-Juel1)IBG-2-20101118 001041664 9801_ $$aFullTexts