001     1041664
005     20250610131449.0
024 7 _ |a 10.1093/biomethods/bpaf027
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02369
|2 datacite_doi
024 7 _ |a 40336971
|2 pmid
024 7 _ |a WOS:001483470400001
|2 WOS
037 _ _ |a FZJ-2025-02369
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Agarwal, Avinash
|0 P:(DE-Juel1)207602
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Assessing nutritional pigment content of green and red leafy vegetables by image analysis: Catching the “red herring” of plant digital color processing via machine learning
260 _ _ |c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747114074_30174
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Estimating pigment content of leafy vegetables via digital image analysis is a reliable method for high-throughput assessment of their nutritional value. However, the current leaf color analysis models developed using green-leaved plants fail to perform reliably while analyzing images of anthocyanin (Anth)-rich red-leaved varieties due to misleading or “red herring” trends. Hence, the present study explores the potential for machine learning (ML)-based estimation of nutritional pigment content for green and red leafy vegetables simultaneously using digital color features. For this, images of n = 320 samples from six types of leafy vegetables with varying pigment profiles were acquired using a smartphone camera, followed by extract-based estimation of chlorophyll (Chl), carotenoid (Car), and Anth. Subsequently, three ML methods, viz., Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were tested for predicting pigment contents using RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and L*a*b* (Lightness, Redness-greenness, Yellowness-blueness) datasets individually and in combination. Chl and Car contents were predicted most accurately using the combined colorimetric dataset via SVR (R2 = 0.738) and RFR (R2 = 0.573), respectively. Conversely, Anth content was predicted most accurately using SVR with HSV data (R2 = 0.818). While Chl and Car could be predicted reliably for green-leaved and Anth-rich samples, Anth could be estimated accurately only for Anth-rich samples due to Anth masking by Chl in green-leaved samples. Thus, the present findings demonstrate the scope of implementing ML-based leaf color analysis for assessing the nutritional pigment content of red and green leafy vegetables in tandem.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a de Jesus Colwell, Filipe
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Correa Galvis, Viviana Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hill, Tom R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Boonham, Neil
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Prashar, Ankush
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1093/biomethods/bpaf027
|g p. bpaf027
|0 PERI:(DE-600)2879161-7
|n 1
|p bpaf027
|t Biology methods & protocols
|v 10
|y 2025
|x 2396-8923
856 4 _ |u https://juser.fz-juelich.de/record/1041664/files/bpaf027.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041664
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)207602
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL METHODS PROTOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:36:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:36:55Z
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21