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Abstract 

Estimating pigment content of leafy vegetables via digital image analysis is a reliable method for high-throughput assessment of 
their nutritional value. However, the current leaf color analysis models developed using green-leaved plants fail to perform reliably 
while analyzing images of anthocyanin (Anth)-rich red-leaved varieties due to misleading or “red herring” trends. Hence, the present 
study explores the potential for machine learning (ML)-based estimation of nutritional pigment content for green and red leafy vege-
tables simultaneously using digital color features. For this, images of n¼ 320 samples from six types of leafy vegetables with varying 
pigment profiles were acquired using a smartphone camera, followed by extract-based estimation of chlorophyll (Chl), carotenoid 
(Car), and Anth. Subsequently, three ML methods, namely, Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), 
and Random Forest Regression (RFR), were tested for predicting pigment contents using RGB (Red, Green, Blue), HSV (Hue, 
Saturation, Value), and L�a�b� (Lightness, Redness-greenness, Yellowness-blueness) datasets individually and in combination. Chl 
and Car contents were predicted most accurately using the combined colorimetric dataset via SVR (R2 ¼ 0.738) and RFR (R2 ¼ 0.573), 
respectively. Conversely, Anth content was predicted most accurately using SVR with HSV data (R2 ¼ 0.818). While Chl and Car could 
be predicted reliably for green-leaved and Anth-rich samples, Anth could be estimated accurately only for Anth-rich samples due to 
Anth masking by Chl in green-leaved samples. Thus, the present findings demonstrate the scope of implementing ML-based leaf 
color analysis for assessing the nutritional pigment content of red and green leafy vegetables in tandem.
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Introduction
Traditionally, cultivation has been focused on producing high- 

biomass crops such as grains, fruits, and tubers, whereas leafy 

crops were mostly considered a supplement. However, in recent 

years leafy vegetables have been recognized as a “superfood” ow-

ing to them being a source of numerous nutritional substances 

such as antioxidants and minerals, as well as dietary fibers that 

promote gut health [1–3]. Amongst these beneficial dietary phy-

toconstituents, chlorophylls (Chl), carotenoids (Car), and antho-

cyanins (Anth) are three nutritional pigments well-known to 

have a positive impact on human health [4–7].
While Chl and Car are abundantly present in numerous green- 

leaved crops, focus on producing Anth-rich red-leaved crops has 

intensified in the past decade owing to growing awareness regard-

ing the potential health benefits of Anth [5]. Consequently, there 

have been concerted efforts to promote large-scale production of 

various Anth-rich leafy vegetables belonging to diverse plant fam-
ilies, including Amaranthaceae, Brassicaceae, and Lamiaceae [8]. 
This interest in large-scale cultivation of Anth-rich vegetables has 
brought to light a new challenge for growers: large-scale assess-
ment of the nutritional quality of such crops in a cost-effective 
and rapid manner.

In the current scenario, machine vision has become a stan-
dard tool for high-throughput, noninvasive assessment of crop 
health and nutritional quality [9–13]. Amongst the different ma-
chine vision technologies being used for large-scale crop moni-
toring, digital cameras stand out as the most widely used due to 
their affordability, ease of application, and the strong connection 
between leaf pigmentation and digital color features [14–18]. 
These digital color features, primarily recorded in terms of Red– 
Green–Blue (RGB) reflectance, can be easily translated to other 
three-dimensional color spaces, such as Hue–Saturation–Value 
(HSV) and Lightness–Redness-greenness–Yellowness-blueness 
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(L�a�b�), enabling a more in-depth assessment of plant digital 
color profile. In addition, compatibility of these digitized colori-
metric features with modern analytical tools such as machine 
learning (ML) allows the implementation of highly advanced 
data processing approaches for assessing crop quality more 
accurately [19–24].

Notably, a majority of protocols for estimating leaf pigment 
contents using digital color features have been developed using 
green-leaved plants due to the prevalence of such crops in con-
ventional commercial cultivation, the primary focus being Chl 
and Car estimation [25–29]. In contrast, only a few studies have 
been carried out with red-leaved Anth-rich plants for estimating 
Anth content [30, 31]. Interestingly, co-estimation of all three 
types of pigments simultaneously across multiple plant species 
via generalized models remains largely unexplored, possibly ow-
ing to misleading or “red herring” shifts in digital color features in 
the presence of high Anth concentrations.

Hence, the current study aims to assess the feasibility of esti-
mating Chl, Car, and Anth contents in green- and red-leaved crops 
concurrently by using ML to process digital color features and gen-
erate generalized multi-species models. For this, samples from six 
different leafy vegetables with varying nutritional pigment pro-
files were photographed digitally. Color features of the leaf sam-
ples were used to generate fundamental and advanced ML-based 
regression models for noninvasive high-throughput quantification 
of these three pigments simultaneously across multiple crop spe-
cies, including both anthocyanic and nonanthocyanic varieties. 
Subsequently, impact of leaf Anth content on the best-performing 
prediction models was also assessed.

Materials and methods
Plant material
The study was carried out with six commercially available leafy 
vegetables (Fig. 1a), namely, purple basil (Ocimum basilicum L. var. 
purpurascens; PB), Greek basil (Ocimum basilicum L. var. minimum; 
GB), red pak choi (Brassica rapa L. ssp. chinensis cv. “Rubi F1”; RPC), 
green pak choi (Brassica rapa L. ssp. chinensis; GPC), scarlet kale 
(Brassica oleracea L. var. acephala “Scarlet”; SK), and arugula (Eruca 
vesicaria ssp. sativa Mill. cv. ‘Wasabi Rocket’; WR). The red leafy 

vegetables (RLV), i.e. PB and RPC, had Anth-rich dark purple and 
reddish-green leaves. In contrast, the green leafy vegetables 
(GLV), i.e. GB, GPC, and WR, displayed various shades of green 
with no hint of red. SK possessed green leaves with a reddish- 
tinge and prominent red midrib and veins, and was hence desig-
nated as the red-green leafy vegetable (RGLV).

Seedlings of all six leafy vegetables were initiated in coco-peat 
plugs within a nursery (Aralab, InFarm UK Ltd., London, UK), at a 
density of 5–10 seedlings per plug. Upon reaching a height of ap-
proximately 5 cm, the seedlings were transferred to an experi-
mental hydroponic vertical farm (InStore Farm V2, InFarm UK 
Ltd.) located at the Agriculture Building, Newcastle University, 
UK. A total of 24 seedling plugs were taken for each type of leafy 
vegetable and distributed across two hydroponic trays (dimen-
sions: 30 × 40 cm2 each). A commercially-available hydroponics 
fertilizer mix was used as the nutrient source, and the ebb-and- 
flow method was implemented for flooding the hydroponic 
chamber with nutrient solution at regular intervals (10 min/h). 
White LEDs with approximate red (400–499 nm): green (500– 
599 nm): blue (600–699 nm) distribution of 40:20:40 were used to 
maintain a PPFD of 280 µmol/m2 s following a 16/8 h day–night 
cycle. Growth conditions were maintained at 25 ± 1�C and 65 ± 5% 
relative humidity via a custom-made HVAC system [32]. Plant 
growth environment was monitored using sensors for tempera-
ture, humidity, flow rate, electrical conductivity, and pH via a 
Farmboard (InFarm UK Ltd.).

Leaf sampling and image acquisition
Leaf sampling was done at 15–20 days of growth within the hydro-
ponics chamber. Fully expanded leaves with diverse levels of pig-
mentation (Fig. 1a) were selectively excised at the base and 
immediately transferred to a customized setup for imaging 
(Fig. 1b). The setup included a frame for mounting a smartphone, 
four neutral-white (4000 K) LED tube-lights (Model No. 0051048, 
Feilo Sylvania International Group Kft., Budapest, Hungary; www. 
sylvania-lighting.com) for steady lighting, as well as a stage with a 
white matte surface for placing the leaf samples. A Redmi Note 7 
Pro smartphone (Xiaomi Corp., Beijing, China) having Sony IMX 
586 RGB sensor (size 1/2.0”, Quad-Bayer array) with a dual rear- 
camera system (primary lens: resolution 48 megapixels, aperture 

Figure 1 Variations in pigmentation across leaf samples from the six leafy vegetables used in the present study (a), and a schematic overview of the 
image acquisition setup (b)
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f/1.8, wide angle, pixel size 1.6 µm, phase detection autofocus; sec-
ondary lens: resolution 5 megapixels, aperture f/2.4, depth percep-
tion) was used for image acquisition. The images (8000 × 6000 
pixels, sRGB color space, JPEG format) were captured using the 
Open Camera android application (ver. 1.52, developer: Mark 
Harman, source: Google Play Store). A distance of 50 cm was 
maintained between the camera and stage, along with fixed expo-
sure time 1/100 s and ISO-200; automatic adjustments such as 
auto-focus and exposure compensation were disabled.

Destructive quantification of pigment contents
Chl, Car, and Anth contents were evaluated spectrophotometri-
cally following image acquisition. Briefly, two sections (2 cm2 

each) were excised from each leaf, weighed individually, sealed 
into separate vials, and transferred to −20�C for storage. The sec-
tions were subsequently put in a liquid nitrogen bath and pulver-
ized with stainless-steel beads using a tissue homogenizer (Geno/ 
Grinder 2010, SPEX SamplePrep, Cole-Parmer, Illinois, USA). One 
batch of vials was used for quantifying Chl and Car contents, and 
the other batch for Anth content.

Chl and Car contents were assessed as described by 
Lichtenthaler [33]. Briefly, each vial was added with chilled 80% 
(v/v) acetone (1 mL) and vortexed, followed by centrifugation at 
10 000g at 4�C for 15 min. The supernatant was collected, and the 
tissue-pellet was re-washed with 1 mL of the solvent. Both 
extracts were pooled, and absorbance was recorded at 470 nm 
(A470), 647 nm (A647), and 663 nm (A663). Total Chl and Car con-
tents were calculated per unit leaf fresh weight (FW) for unit vol-
ume (V) of extract as follows: 

Chl
mg

g FW

� �

¼
18:71A647 þ7:15A663ð Þ × V

1000 × FW
(1) 

Car
mg

g FW

� �

¼
1000A470 � 1822:85A647 þ411:31A663ð Þ × V

198 × 1000 × FW
(2) 

A similar extraction procedure as above was followed for Anth 
using chilled acidified (1% w/v HCl) methanol as the solvent [34]. 
Absorbance was recorded at 530 nm (A530) and 657 nm (A657). 
Here, A530 corresponds to the peak absorbance of Anth, and A657 

was used for pheophytin correction. The expression A530 – 
(0.25×A657) was used to calculate the effective absorbance by 
Anth. A standard curve of cyanidin-3-O-glucoside (Merck KGaA, 
Darmstadt, Germany) was used for calculating Anth content per 
unit leaf FW.

Color feature extraction and comparison with 
pigment contents
Digital color features of whole leaves were extracted using a cus-
tomized image processing pipeline in Python program (www.py 
thon.org) by implementing numpy and cv2 libraries. Within the 
pipeline, features from three color spaces, namely, RGB, HSV, 
and L�a�b�, were extracted for all pixels within the leaf boundary 
(min. 5000 pixels) for calculating the average value of each color 
feature for each sample. Linear and nonlinear correlation of all 
color features was performed for each type of pigment, and rep-
resented using scatter plots with best-fit trendlines and coeffi-
cient of determination (R2; 95% confidence interval). 
Subsequently, color space data were subjected to principal com-
ponent analysis (PCA) with and without pigment contents to vi-
sualize variations across RLV, RGLV, and GLV categories in terms 
of color space profiles, i.e. RGB, HSV, and L�a�b� datasets, as well 
as for the combination of these three color spaces, henceforth re-
ferred to as All_3. For this, a customized PCA pipeline was 

designed in Python using scikit-learn libraries (www.scikit-learn. 
org) [35], with a threshold of >99% variance explained. Data were 
normalized prior to the analysis. PCA biplots were generated us-
ing the first two PCs (PC1, PC2) to visualize the results.

Prediction of pigment contents by digital 
color features
Features from the different color spaces were used for predicting 
pigment contents following three different modeling approaches: 
(1) Partial Least Squares Regression (PLSR), (2) Support Vector 
Regression (SVR), and (3) Random Forest Regression (RFR). 
Herein, PLSR is a fundamental ML tool that can predict a single 
output variable using multiple input variables by creating latent 
variables or “components” which are linear combinations of the 
actual variables [36]. In contrast, SVR is a more advanced ML tool 
capable of creating linear and nonlinear equations in high- 
dimensional space [37], whereas RFR is a ML technique that 
implements a combination of “decision trees” depending on the 
values of randomly sampled vectors to generate a “random for-
est” for prediction [38]. All ML methods were tested using the 
RGB, HSV, L�a�b�, and All_3 color space datasets. Modeling was 
performed in Python using scikit-learn libraries. An overview of 
process parameters for modeling is provided in Table 1.

Briefly, 25 instances for each type of model were generated us-
ing 5-fold cross-validation with five different random states, i.e. 
randomized shuffling of data prior to segregation of training and 
validation datasets. For PLSR, preliminary tests revealed that a 
higher number of model components improved prediction. 
Hence, PLSR models were created with the same number of com-
ponents as the color features in each dataset, i.e. n¼3 for RGB, 
HSV, and L�a�b�, and n¼9 for All_3. The SVR models were tested 
for three kernels or mathematical relations, viz., linear (Lin), poly-
nomial (Pol), and radial basis function (Rbf; Gaussian model). 
Additionally, training of SVR models was optimized by fine- 
tuning four additional hyperparameters as follows: (1) C, regular-
ization parameter balancing model fit and complexity; (2) γ, set-
ting the range of influence within the model for a single training 
point; (3) ε, margin of tolerance with no penalty for errors; (4) de-
gree of polynomial function (Table 1). Similarly, performance of 
RFR models was evaluated for 5, 10, and 50 estimators (RFR_5, 
RFR_10, RFR_50). The threshold of RFR estimators was deter-
mined following preliminary tests using n¼1, 5, 10, 50, 100, 250, 

Table 1. Overview of machine learning parameters.

Parameter Value Details

Sample size 320 Training: 256
Validation: 64

Model instances 25 No. of cross-validations: 5
No. of random states: 5

Machine learning  
method

PLSR No. of components ¼ No. of color features
SVR Kernel: Lin, Pol, Rbf

C: 0.1, 1, 10, 100
ε: 0.01, 0.1, 1, 10
γ: 0.001, 0.01, 0.1, 1 (Pol and Rbf only)
Degree: 2, 3, 4, 5 (Pol only)

RFR Estimators (n_estim): 5, 10, 50
Color datasets 4 RGB, HSV, L�a�b�, All_3

Methods: PLSR, Partial Least Squares Regression; SVR, Support Vector 
Regression; RFR, Random Forest Regression. Kernels: Lin, linear; Pol, polynomial; 
Rbf, radial basis function. C, regularization parameter balancing model fit and 
complexity; γ, parameter setting the range of influence for a single training 
point; ε, margin of tolerance with no penalty for errors; Degree, degree of 
polynomial function. RGB: Red, Green, and Blue; HSV: Hue, Saturation, and 
Value; L�a�b�: Lightness, Redness-greenness, and Yellowness-blueness;  
All_3: RGB, HSV, and L�a�b� data combined.
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500, and 1000 estimators (n_estim), wherein n_estim > 50 resulted 
in only marginal improvement (<1%) although the data process-
ing time increased considerably. Subsequently, relative impor-
tance (RI) of all color features for predicting each type of pigment 
content using the different ML methods was assessed in Python 
via the permutation_importance function of the scikit-learn package. 
Herein, five iterations for each type of model were generated 
with all color features by changing the random state, with ten 
repetitions of permutations for each iteration.

Assessing the impact of Anth content on 
model output
Predictive performance of the PLSR, SVR, and RFR models for 
each pigment type was further analyzed by grouping the samples 
based on actual Anth content. For this, two instances of PLSR, 
SVR, and RFR models were evaluated by training (n¼256 sam-
ples) and validation (n¼64 samples) with nonidentical datasets 
using the best-performing colorimetric dataset (RGB, HSV, 
L�a�b�, or All_3) and optimized modeling parameters, i.e. hyper-
parameters for SVR and n_estim for RFR. The models were gener-
ated such that the validation datasets were mutually exclusive 
for both instances. Actual and predicted pigment contents were 
collated for both model instances, followed by grouping of sam-
ples based on actual Anth content as follows: high Anth (HA; 
Anth ≥ 0.5 mg/g FW); medium Anth (MA; 0.07 ≤ Anth < 0.5 mg/g 
FW); low Anth (LA; 0.01 ≤ Anth < 0.07 mg/g FW); and very low 
Anth (VLA; Anth < 0.01 mg/g FW). Subsequently, predictive accu-
racy across the Anth content-based categories was assessed by 
calculating mean absolute error (MAE) and mean absolute per-
centage error (MAPE) between the actual and predicted values.

Statistical analysis
Overlap between the RLV, RGLV, and GLV samples for all colori-
metric scatter plots as well as PCA biplots was quantified by cal-
culating the scaled Euclidean distance between the centroids of 
each group (ΔC), where ΔC¼0 indicates perfect overlap, and 
ΔC¼ 1 indicates maximum separation. Goodness-of-fit for all 
prediction models was represented by R2 and root-mean-squared 
error (RMSE) at a confidence interval of 95%.

Results and discussion
Comparison of pigment contents and digital 
color attributes
Since leaf color results from the interaction of incident visible 
light with the blend of pigments present, it can be considered a 
dynamic attribute of the leaf, which varies in response to physio-
logical changes that affect pigment composition. Therefore, non-
invasive estimation of leaf pigment content through digital color 
analysis requires a thorough evaluation of variations in leaf color 
profiles associated with different pigment blends. Simultaneous 
assessment of leafy vegetables with diverse pigment 

compositions in the current investigation allowed for a detailed 
exploration of this phenomenon.

In the present cohort, the contents of Chl and Car were similar 
across all six leafy vegetables, albeit with considerable range, i.e. 
0.06–2.23 mg/g FW and 0.03–0.37 mg/g FW for Chl and Car, re-
spectively (Table 2). Conversely, the range of Anth content varied 
markedly across the different types of leafy vegetables as 
expected. In particular, samples of RLV, i.e. PB and RPC, had the 
highest Anth contents amongst all, i.e. between 0.07 and 3.41 mg/ 
g FW (Table 2). In comparison, RGLV samples (SK) had relatively 
lower Anth contents (<0.34 mg/g FW), whereas the GLV samples, 
i.e. GB, GPC, and WR, had the lowest overall Anth levels 
(<0.07 mg/g FW).

Plotting of these pigment contents with the digital color fea-
tures revealed diverse trends for the different types of plants 
(Supplementary Figs. S1–S3). Notably, while samples of RGLV 
(n¼ 100) and GLV (n¼ 120) showed considerable overlap for most 
of the color features (0.02 < ΔC < 0.23; Supplementary Table S1), 
RLV samples (n¼100) were plotted more distinctly from the other 
two groups in general (0.19 < ΔC < 0.67; Supplementary Table 
S1). This indicates that the relation between pigment contents 
and digital color features of GLV and RGLV were highly similar, 
whereas RLV presented a clearly divergent trend.

The tendency is represented more concisely by the PCA biplots 
obtained upon analyzing the four colorimetric datasets, i.e. RGB, 
HSV, L�a�b�, and All_3 (Fig. 2). Herein, the strong overlap between 
RGLV and GLV samples (0.05 < ΔC < 0.15; Supplementary Table 
S1), with the RLV samples forming a distinct cluster in most cases 
(0.29 < ΔC < 0.56; Supplementary Table S1), reiterates the impact 
of Anth on leaf digital color profile. The observation was contrary 
to our expectation of RGLV samples being clustered between RLV 
and GLV due to intermediate Anth contents. This suggests that 
the Anth content of RGLV samples was likely not high enough to 
overcome Chl-dominance and elicit a distinctive shift in the col-
orimetric profile with respect to GLV.

While the PCA biplots with HSV, L�a�b�, and All_3 datasets 
showed negligible overlap between RLV and GLV samples 
(Fig. 2b–d; ΔC > 0.45), the biplot with RGB data showed partial 
overlap between these two groups (Fig. 2a; ΔC¼ 0.315). Hence, it 
could be inferred that RGB data did not account for the variations 
in Anth content as strongly as HSV and L�a�b� color spaces, pos-
sibly due to the segregation of redness and greenness into two 
channels of the RGB color space, with the redness-greenness 
transition in leaf color being a characteristic indicator of chang-
ing Anth status. The subsequent PCA of color features with pig-
ment contents (Supplementary Fig. S4) further revealed that RLV 
samples with very low Anth contents, as indicated by their posi-
tion away from the Anth vector, overlapped with the GLV and 
RGLV groups. This suggests that, like the RGLV samples, RLV 
samples with Anth content below a certain threshold had colori-
metric profiles highly similar to GLV samples, dictated predomi-
nantly by the Chl content.

Table 2. Range of pigment contents (mg/g FW) in the leaf samples selected for the present study.

Plant PB RPC SK GB GPC WR

Chlorophyll 0.8–2.06 0.48–1.93 0.11–2.05 0.27–1.53 0.06–2.23 0.31–2.12
Carotenoid 0.15–0.36 0.09–0.32 0.1–0.37 0.07–0.25 0.03–0.29 0.12–0.35
Anthocyanin 0.44–3.41 0.07–1.02 0.001–0.33 0.001–0.02 0.001–0.06 0.001–0.01
Category RLV RLV RGLV GLV GLV GLV
n 60 40 100 40 40 40

Plants: GB, Greek basil; GPC, Green pak choi; PB, Purple basil; RPC, Red pak choi; SK, Scarlet kale; WR, Wasabi rocket. Categories based on the visual appearance: 
GLV, green leafy vegetable; RGLV, red-green leafy vegetable; RLV, red leafy vegetable. n, number of leaves used.
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Nonetheless, the observations highlight the impact of Anth on 

leaf digital color profiles, clearly demonstrating the misleading or 

“red herring” shift in colorimetric features caused by high Anth 

contents. Such deviations pose a challenge in implementing sim-

plistic broad-spectrum digital color analysis models for estimat-

ing pigment contents in green- and red-leaved crop species 

simultaneously due to limited generalizability, necessitating the 

application of advanced approaches such as ML. The subsequent 

sections delve deeper into the possibilities and limitations of gen-

eralized ML-based models for pigment content estimation using 

digital color data as revealed by our analyses.

Predicting Chl content
Owing to the importance of Chl as a key indicator of plant health 

status and nutritional value, estimating the content of this pig-

ment has been of interest for crop scientists and cultivators since 

many decades. While the process conventionally relied mainly 

on spectrophotometric estimations using leaf extracts as 

proposed by pioneering studies [33, 39], introduction of Chl 

meters such as SPAD [40] was a major advancement as it enabled 

nondestructive estimations for the first time. Further, with con-

comitant improvements in digital imaging as well as data proc-

essing technologies in the past two decades, a large number of 

studies have demonstrated the application of various ML-based 

approaches such as SVR, RFR, back-propagation neural network, 

multilayer perceptron, ridge regression, and gradient boosting 

decision tree for high-throughput prediction of Chl content via 

RGB and multispectral imaging [17, 19, 20, 41–45]. Since all such 

studies have presented the findings pertaining to single crops, 

the next step in advancing Chl estimations would be the develop-

ment of generalized models that could be applied to multiple 

crops simultaneously, including both green-leaved and antho-

cyanic varieties, as presented herein.
In general, accuracy of predicting Chl content differed mark-

edly for the different ML methods and color space datasets tested 

(Fig. 3). Amongst all approaches, estimation of Chl content was 

Figure 2 PCA biplots depicting the variations in digital color profiles of leafy vegetables with different visual profiles. Color space datasets: (a) Red, 
Green, Blue (R, G, B); (b) Hue, Saturation, Value (H, S, V); (c) Lightness, Redness–greenness, Yellowness–blueness (L�, a�, b�); (d) all three color spaces 
combined. PC1 and PC2, first and second principal components, with values in parentheses indicating variance explained by the respective PC. Ellipses 
represent 95% confidence intervals. Plants within different categories: Purple basil (PB), Red pak choi (RPC), Scarlet kale (SK), Greek basil (GB), Green 
pak choi (GPC), and Wasabi rocket (WR). Sample sizes: Green leafy vegetables, n¼ 120; Red-green leafy vegetable, n¼100; Red leafy vegetables, n¼100
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most accurate when SVR_Rbf models were trained using the All_3 
dataset (R2 ¼ 0.738, RMSE¼ 0.217 mg/g FW). Further, implement-
ing the same ML method with individual color spaces resulted in 
slightly less accurate Chl content estimates (0.7<R2 < 0.725, 
0.22<RMSE < 0.24 mg/g FW). In contrast, using SVR_Pol yielded 
considerably inaccurate Chl predictions with individual color 
space datasets (0.38<R2 < 0.52, 0.29<RMSE < 0.34 mg/g FW) as 
compared to the All_3 dataset (R2 ¼ 0.704, RMSE¼ 0.232 mg/g FW). 
Although a similar trend was also observed for the linear models, 
viz., PLSR and SVR_Lin, the difference in accuracy was relatively 
lesser between the models created using individual color spaces 
(0.57<R2 < 0.61, 0.268<RMSE < 0.278 mg/g FW) and the All_3 
dataset (R2 � 0.67, RMSE � 0.24 mg/g FW).

In contrast to the PLSR and SVR models, where the All_3 data-
set gave the best results, accuracy of predictions using RFR_50 
(Fig. 3) was marginally better with HSV values (R2 ¼ 0.719, 
RMSE¼ 0.225 mg/g FW) as compared to the All_3 dataset (R2 ¼

0.713, RMSE¼ 0.228 mg/g FW). Overall, RFR models trained using 
HSV and All_3 datasets had better predictions compared to RGB 
and L�a�b� dataset-based models for all three n_estim levels. 
Further, increasing n_estim improved the overall accuracy pro-
gressively for all colorimetric datasets, and only the SVR_Rbf 
models outperformed the RFR_50 models.

Interestingly, although R was identified as one of the most im-
portant features for Chl estimation (0.23<RI < 0.71; 
Supplementary Table S2), which is understandable considering 
the strong correlation of R with Chl content (R2 ¼ 0.715, n¼320; 

Supplementary Fig. S1a), predictions using RGB data alone did 
not yield very high accuracies for any of the ML methods. This 
suggests that instead of relying on information provided by indi-
vidual color features, the prediction models took into consider-
ation the underlying relations of all available color features. 
Consequently, a synergistic effect of combining data from multi-
ple color spaces for better Chl content prediction was observed 
for all three modeling approaches.

Comparing the best and worst outcomes of n¼25 instances 
for each type of model indicated that predictions were most con-
sistent with SVR_Rbf modeling using HSV and All_3 datasets 
(Fig. 3), i.e. variation of outcomes across model instances was the 
least (ΔR2 < 0.174, ΔRMSE < 0.062 mg/g FW). In contrast, out-
comes were most inconsistent when L�a�b� was used to train 
SVR_Pol and RFR_10 models (ΔR2 > 0.34, ΔRMSE > 0.09 mg/g FW). 
Hence, selection of the Rbf kernel was beneficial for SVR-based 
models during Chl estimation, whereas increasing the number of 
estimators led to lower variability in the RFR models. Additional 
trials with more diverse plant varieties and ML methods would 
allow further optimization of accuracy and consistency.

Predicting Car content
Similar to the Chl estimation models, prediction of Car content 
was most accurate when the All_3 dataset was used with differ-
ent modeling algorithms (Fig. 4). In particular, RFR_50 (R2 ¼

0.573, RMSE¼ 0.043 mg/g FW) and SVR_Rbf (R2 ¼ 0.566, 
RMSE¼ 0.0433 mg/g FW) were the two most accurate modeling 

Figure 3 Accuracy of predicting chlorophyll content via different combinations of modeling approaches and color space datasets as indicated by the 
coefficient of determination (R2; a) and root-mean-squared error (RMSE; b). Vertical bars indicate mean values, whereas the solid and open circles 
represent the lower and upper ranges, respectively, for n¼ 25 instances of each type of model generated via 5-fold cross-validation with five different 
random states. Modeling methods: PLSR, Partial Least Squares Regression; SVR, Support Vector Regression with linear (Lin), polynomial (Pol), and radial 
basis function (Rbf) kernels; RFR_n, Random Forest Regression with n estimators. Color spaces: RGB, Red, Green, Blue; HSV, Hue, Saturation, Value; 
L�a�b�, Lightness, Redness–greenness, Yellowness–blueness; All_3, combined dataset of RGB, HSV, and L�a�b� color spaces. Darker and lighter shades 
on bars indicate the best and poorest outcomes, respectively
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approaches when the All_3 dataset was used. HSV color data also 
gave relatively good results (R2 > 0.55, RMSE < 0.045 mg/g FW) 
with SVR_Rbf and RFR_50 models. However, comparing the aver-
age variation in R2 and RMSE values for the different color data-
sets indicated that the outcomes were more consistent across 
n¼ 25 model instances for the SVR_Rbf models (ΔR2 ¼ 0.24, 
ΔRMSE¼0.0135 mg/g FW) as compared to RFR_50 models (ΔR2 ¼

0.275, ΔRMSE¼ 0.0176 mg/g FW). In contrast, the least reliable 
results were obtained when data from the three color spaces 
were used independently with SVR_Pol (0.169<R2 < 0.222, 
0.058<RMSE < 0.061 mg/g FW), followed by PLSR and SVR_Lin 
(0.241<R2 < 0.278, 0.056<RMSE < 0.058 mg/g FW). It can thus be 
inferred that, like Chl content, prediction of Car content was 
more accurate when appropriate SVR and RFR parameters were 
applied, particularly with All_3 and HSV datasets.

In the past, Car estimation has been extensively dependent on 
leaf extract-based measurements using spectrophotometry and 
high-performance liquid chromatography [33, 46, 47]. Since the 
spectral attributes of Car overlap strongly with the more domi-
nant Chl in green leaves, as well as with both Chl and Anth in 
anthocyanic leaves [47–49], previous studies have even utilized 
techniques such as reflectance spectroscopy, mass spectrometry, 
and hyperspectral imaging to dissect leaf spectral traits for esti-
mating Car content noninvasively [50–54]. However, the intrica-
cies of data analysis presented therein limit direct application of 
these technologies to commercial farming operations with di-
verse plants.

To simplify the process, digital imaging-based studies on 
green-leaved plants demonstrated the strong inverse relation-
ship of Car with the G channel of the RGB color space [27, 28]. 
This relationship is attributed to the absorptive capacity of Car in 
the green waveband [46, 55]. Consequently, G values could have 
been useful for predicting Car content. However, because Anth 
molecules also have a strong absorbance in the green waveband 
[49], good correlation between Car content and G values was not 
observed in our analyses (R2 ¼ 0.196, n¼320), especially due to 
an abrupt shift in the G values of Anth-rich plants 
(Supplementary Fig. S2b). Further, G was deemed as an impor-
tant feature only for the PLSR model (RI¼ 0.485; Supplementary 
Table S2). Hence, the present findings highlight the likelihood of 
interference by Anth on Car estimation in Anth-rich plants using 
G values.

As anticipated, the overall accuracy of predicting Car content 
(0.16<R2 < 0.58; Fig. 4) was not very high. This relatively low ac-
curacy of Car content prediction was primarily due to “pigment 
masking,” a phenomenon wherein the contribution of the target 
pigment to leaf color is overshadowed by the presence of high 
concentrations of other pigments with overlapping absorbance 
spectra [56–58]. Since most of the samples used in this study had 
very high contents of Chl, along with high Anth in RLV samples, 
it is possible that the impact of Car on the digitally recorded color 
features was not discernible due to masking by the other two pig-
ments. Consequently, only approximate Car estimates (R2 < 0.6) 
could be obtained using the digital images.

Figure 4 Accuracy of predicting carotenoid content via different combinations of modeling approaches and color space datasets as indicated by the 
coefficient of determination (R2; a) and root-mean-squared error (RMSE; b). Vertical bars indicate mean values, whereas the solid and open circles 
represent the lower and upper ranges, respectively, for n¼ 25 instances of each type of model generated via 5-fold cross-validation with five different 
random states. Modeling methods: PLSR, Partial Least Squares Regression; SVR, Support Vector Regression with linear (Lin), polynomial (Pol), and radial 
basis function (Rbf) kernels; RFR_ n, Random Forest Regression with n estimators. Color spaces: RGB, Red, Green, Blue; HSV, Hue, Saturation, Value; 
L�a�b�, Lightness, Redness–greenness, Yellowness–blueness; All_3, combined dataset of RGB, HSV, and L�a�b� color spaces. Darker and lighter shades 
on bars indicate the best and poorest outcomes, respectively
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It is worth mentioning here that while high Chl contents 
can completely mask Car, concentration of Chl and Car within a 
leaf is strongly correlated, as reported in various plant species [28, 
59–62]. This trend was also observed in our study upon comparing 
Chl and Car contents of leaf samples for each of the six 
leafy vegetables individually (0.68<R2 < 0.93; Supplementary 
Table S3). Furthermore, preliminary analyses with the current 
samples yielded more accurate indirect Car content estimates 
(R2 ¼ 0.69–0.79, RMSE¼ 0.031–0.038 mg/g FW; data not shown) 
using predicted Chl content values and plant-specific Chl vs. Car 
correlation equations (Supplementary Table S3) as compared to 
direct Car content estimates using colorimetric data and ML 
(Fig. 4). Hence, from the perspective of feasibility and considering 
the possibility of Car masking by other pigments, indirect estima-
tion of Car using predicted Chl content could be deemed more re-
liable than attempting direct digital color-based Car estimation, 
especially for Anth-rich varieties. However, further testing of 
species- and variety-specific models would be needed to use this 
method with higher fidelity, especially because the Chl: Car 
balance may differ significantly across plant genotypes.

Predicting Anth content
Estimation of leaf Anth, like Car, has predominantly relied on 
leaf extract-based measurements [63–65]. While various studies 
have demonstrated the potential of assessing Anth content non-
destructively using methods such as hyperspectral imaging and 
reflectance spectroscopy [51, 66–68], handheld devices such as 

ACM-200 have also been developed to streamline the process 
[69]. Although such approaches presented the possibility of non-
destructive Anth estimation, bottlenecks such as dependence on 
specialized high-end instrumentation in the former and labor in-
tensiveness for the latter remained.

Nonetheless, a few recent studies have demonstrated the pos-
sibility of estimating Anth content using digital imaging. For in-
stance, Askey et al. [70] carried out experiments using green as 
well as Anth-rich Arabidopsis genotypes comparing different ML- 
based regression models to assess Anth accumulation through 
digital imaging as a means for evaluating plant stress. In a later 
investigation by Kim and van Iersel [30], two red-leafed lettuce 
cultivars were used for quantifying Anth via the Normalized 
Difference Anth Index, calculated as [IR − IG]/[IR þ IG], wherein IR 

and IG indicate pixel intensity in the red and green wavebands, 
respectively. Similarly, Clemente et al. [31] reported Anth estima-
tion in lettuce by employing the Green Leaf Index, i.e. [2G − R − 
B]/[2G þ RþB]. The present observations augment these findings 
by contributing to the development of more comprehensive Anth 
prediction models that could be implemented for assessing the 
nutritional value of a diverse range of leafy vegetables si-
multaneously.

In our study, SVR_Rbf models yielded the best results for Anth 
prediction across different color datasets (0.78<R2 < 0.82, 
0.26<RMSE < 0.29 mg/g FW; Fig. 5). In contrast, PLSR and 
SVR_Pol models using RGB data produced the least accurate pre-
dictions (R2 � 0.58, RMSE � 0.4 mg/g FW), followed by PLSR 

Figure 5 Accuracy of predicting anthocyanin content via different combinations of modeling approaches and color space datasets as indicated by the 
coefficient of determination (R2; a) and root-mean-squared error (RMSE; b). Vertical bars indicate mean values, whereas the solid and open circles 
represent the lower and upper ranges, respectively, for n¼ 25 instances of each type of model generated via 5-fold cross-validation with five different 
random states. Modeling methods: PLSR, Partial Least Squares Regression; SVR, Support Vector Regression with linear (Lin), polynomial (Pol), and radial 
basis function (Rbf) kernels; RFR_n, Random Forest Regression with n estimators. Color spaces: RGB, Red, Green, Blue; HSV, Hue, Saturation, Value; 
L�a�b�, Lightness, Redness–greenness, Yellowness–blueness; All_3, combined dataset of RGB, HSV, and L�a�b� color spaces. Darker and lighter shades 
on bars indicate the best and poorest outcomes, respectively
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models implementing L�a�b� data (R2 ¼ 0.62, RMSE¼ 0.38 mg/g 
FW). All other PLSR and SVR models gave relatively reliable pre-
dictions (R2 > 0.7, RMSE < 0.34 mg/g FW) irrespective of the color 
dataset used (Fig. 5). Similarly, all RFR models also provided good 
estimates of Anth content (R2 > 0.7, RMSE < 0.33 mg/g FW), and 
increasing n_estim from 5 to 50 increased the accuracy by a small 
margin (n_estim¼5: 0.714<R2 < 0.782, 0.282<RMSE < 0.326 mg/g 
FW; n_estim¼ 50: 0.74<R2 < 0.813, 0.264<RMSE < 0.315 mg/g 
FW; Fig. 5).

For the PLSR- and SVR-based models, both HSV and All_3 data-
sets gave highly accurate results (0.702<R2 < 0.818, 0.262<RMSE 
< 0.338 mg/g FW; Fig. 5), followed by models utilizing the L�a�b�

dataset (0.618<R2 < 0.805, 0.274<RMSE < 0.385 mg/g FW). 
However, the RFR algorithm performed most reliably when 
trained with L�a�b� data (0.782<R2 < 0.814, 0.264<RMSE <
0.283 mg/g FW), outperforming RFR models trained using the 
All_3 dataset (0.773<R2 < 0.799, 0.274<RMSE < 0.287 mg/g FW), 
while the HSV-based RFR models lagged behind by a clear margin 
(0.714<R2 < 0.751, 0.304<RMSE < 0.326 mg/g FW). This is in con-
trast to the results of Chl estimation (Fig. 3), wherein HSV-based 
RFR models performed better than the L�a�b�-based RFR models. 
This observation highlights the importance of compatibility be-
tween the colorimetric dataset and the modeling algorithm for ac-
curately estimating specific pigment types.

Interestingly, the relatively lower accuracy of RGB-based Anth 
prediction models (Fig. 5) highlights the limitations of this color 
space in accurately capturing the transitions between leaf green-
ness and redness as Anth content increases, as discussed in the 
section on “Comparison of pigment contents and digital color 
attributes”. In contrast, correlation analyses (Supplementary Fig. 
S3) and evaluation of importance (Supplementary Table S2) 
revealed that HSV and L�a�b�-based features, namely, H and a�, 
reflected the change in Anth content strongly (R2 > 0.78, n¼320), 
and were deemed to be the most important features for Anth pre-
diction with all nonlinear algorithms (0.19<RI < 0.66). Notably, 
both these features account for the transition between redness 
and greenness across a continuous scale, a characteristic visual 
change observed in leaf color due to variations in Anth content. 
Hence, considering these factors along with the better perfor-
mance of HSV and L�a�b�-based models, both these colorimetric 
datasets could be chosen for Anth predictions, but with due con-
sideration to consistency of predictions for the selected 
algorithm–dataset combination.

As observed, consistency of Anth prediction as per the differ-
ence between highest and lowest values of both R2 and RMSE ob-
served across n¼ 25 model instances was highest for the PLSR 
models utilizing HSV and All_3 datasets, as well as for the 
SVR_Pol models generated using HSV data (ΔR2 < 0.214, ΔRMSE <
0.212 mg/g FW). Interestingly, models with better overall Anth 
prediction accuracy, such as SVR_Rbf and RFR_50, had higher 
variability between best and worst R2 and RMSE values observed 
(ΔR2 > 0.24, ΔRMSE > 0.23 mg/g FW). Hence, selection of Anth es-
timation model would require more careful consideration of con-
sistency of outcomes along with prediction accuracy during 
practical implementation. Further tests with larger and more di-
verse training sample sizes and more complex ML methods 
would likely help optimize both factors.

Impact of Anth content on pigment 
content prediction
While the above results (Figs. 3–5) depict the outcomes of pig-
ment content prediction models for all six types of leafy 

vegetables combined, the present section compares the predic-
tion outcomes for samples divided into four groups based on ac-
tual Anth content, i.e. HA, MA, LA, and VLA. For this the results 
from two instances of the best performing PLSR, SVR, and RFR 
models have been collated and evaluated in terms of MAE and 
MAPE (Fig. 6). An overview of model parameters considered for 
this assessment has been provided in Table 3.

Here, comparison of MAE values for Chl prediction indicated 
that the SVR models did not differentiate between the VLA, LA, 
MA, and HA categories (Fig. 6a), although the mean MAPE values 
were distinctly higher for LA (MAPE¼26.3%) and MA 
(MAPE¼ 23.6%) groups compared to HA and VLA (MAPE < 13.5%;  
Fig. 6b). While the MAPE values for RFR and PLSR models were 
also higher for MA and LA samples (MAPE > 24.2%) compared to 
HA and LA (MAPE < 17.4%), higher MAE values were only ob-
served for the LA group using the RFR models (MAE¼0.19 mg/g 
FW) as well as for both MA and LA with the PLSR models (MAE >
0.22 mg/g FW) compared to the other groups (MAE < 0.18 mg/g 
FW). Thus, it may be inferred that Chl predictions were more 
consistent for samples with very high and very low Anth con-
tents, whereas intermediate Anth contents possibly confused 
the algorithms.

Likewise, Car content predictions were most accurate for the 
HA samples (MAE < 0.026 mg/g FW, MAPE < 10.3%; Fig. 6c and d) 
followed by the VLA group (MAE < 0.036 mg/g FW, MAPE <
20.1%) for all three types of models, in contrast to the MA and LA 
samples (0.035<MAE < 0.054 mg/g FW, 23% < MAPE < 31.6%). 
Herein, while MAPE values were comparable across the different 
types of models, MAE values were generally higher for the PLSR- 
based models. The observations reiterate the possibility of model 
confusion for samples with intermediate Anth contents while 
predicting the concentration of other pigments, concurrently 
highlighting the better performance of methods such as SVR and 
RFR as compared to PLSR. Further investigations using larger 
training and test datasets with more varieties of plants having di-
verse pigmentations would provide a better insight into these 
aspects from the perspective of comparing outcomes for HA, MA, 
LA, and VLA samples.

Unlike Chl and Car predictions, MAE and MAPE showed a clear 
trend with increasing Anth content for Anth estimation models 
(Fig. 6e and f). In particular, MAE values showed a distinct incre-
ment with increasing Anth content, i.e. from 0.008–0.044 mg/g 
FW for VLA samples to 0.36–0.51 mg/g FW for HA samples. 
Conversely, the MAPE showed a reversed trend of increasing 
steadily with decreasing Anth content, i.e. from <35% for HA 
samples to >200% for VLA samples. This reversal in trend be-
tween MAE and MAPE suggests that while the absolute error of 
prediction was low for the LA and VLA samples, the magnitude of 
errors was too high compared to the actual Anth content of those 
samples. The plots of color features with Anth content 
(Supplementary Fig. S3) indicate that there was no discernible 
change in color features at very low Anth ranges. Hence, such 
minor variations in Anth content could not be reliably mapped 
onto variations in digital color feature values. Hence, the pres-
ently tested approach of image-based Anth estimation would be 
more practical for leaf samples with medium to reasonably high 
Anth contents. This inference takes into consideration the domi-
nance of Chl on leaf color profile, which results in the masking of 
Anth in green-leaved samples, similar to Car masking observed 
across all sample categories. However, unlike the current ap-
proach wherein samples with very high to very low Anth con-
tents were used simultaneously, prediction models created using 
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samples with only medium to low Anth contents could be tested 
for higher sensitivity at lower Anth ranges.

In general, these observations highlight the “red herring” effect 
of varying Anth content on the performance of colorimetric data- 
based ML models for pigment content prediction. While numerous 
studies have proposed diverse protocols for nondestructive estima-
tion of pigment contents via digital image analysis, none of the 
studies have addressed the possibility of generalizability across 
plant species or between anthocyanic and non-anthocyanic varie-
ties in depth. Hence, our findings provide the first insight into the 
scope of developing holistic prediction models that take these 
aspects into account by proposing the use of broad-spectrum mod-
els that may be used for multiple crop species including green- as 
well as red-leaved varieties. Additional studies with bigger datasets 
derived from a more diverse cohort of green-leaved and Anth-rich 
plant varieties, and implementation of more advanced data proc-
essing tools such as deep learning, could enable further optimiza-
tion of colorimetric data-based pigment content estimation.

Table 3. Best performing models for estimating each type of 
pigment content.

Pigment Model Parameters

Chlorophyll PLSR Dataset: All_3
SVR Dataset: All_3; Kernel: Rbf; C: 100; ε: 0.1; γ: 0.1
RFR Dataset: HSV; n_estim¼ 50

Carotenoid PLSR Dataset: All_3
SVR Dataset: All_3; Kernel: Rbf; C: 10; ε: 0.01; γ: 0.1
RFR Dataset: All_3; n_estim¼ 50

Anthocyanin PLSR Dataset: All_3
SVR Dataset: HSV; Kernel: Rbf; C: 10; ε: 0.01; γ: 1
RFR Dataset: L�a�b�; n_estim¼50

Models: PLSR, Partial Least Squares Regression; SVR, Support Vector 
Regression; RFR, Random Forest Regression. Datasets: HSV, Hue, Saturation, 
Value; L�a�b�, Lightness, Redness-greenness, Yellowness-blueness; All_3, 
combined dataset of RGB (Red, Green, Blue), HSV, and L�a�b� color spaces. 
Hyperparameters: Rbf, radial basis function kernel; C, regularization parameter 
balancing model fit and complexity; γ, parameter setting the range of 
influence for a single training point; ε, margin of tolerance with no penalty for 
errors; n_estim, n estimators for RFR.

Figure 6 Mean absolute error (MAE) and mean absolute percentage error (MAPE) of predicting chlorophyll (a, b), carotenoid (c, d), and anthocyanin 
(Anth; e, f) contents via best-performing Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR) 
models (Table 3) for samples grouped as per observed leaf Anth content. Sample groups: HA, high Anth (Anth ≥ 0.5 mg/g FW, n¼28); MA, medium Anth 
(0.07 ≤ Anth < 0.5 mg/g FW, n¼ 25); LA, low Anth (0.01 ≤ Anth < 0.07 mg/g FW, n¼ 25); VLA, very low Anth (Anth < 0.01 mg/g FW, n¼ 50). Solid and open 
circles represent the lower and upper ranges, respectively. Values represent the combined output of two model instances, each created by using non- 
identical datasets for training (n¼256) and validation (n¼ 64). �MAPE upper limit values beyond the plotted axis range
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Conclusion
Our findings indicate that SVR_Rbf and RFR_50 algorithms were 

most effective for predicting Chl, Car, and Anth contents follow-

ing the generalized modeling approach due to their ability to ac-

count for more complex interrelations between multiple digital 

color features and pigment contents. Additionally, while combin-

ing the data from RGB, HSV, and L�a�b� color spaces was most ef-

fective for predicting pigment contents using the different 

algorithms, use of HSV and L�a�b� independently also provided 

reliable results when used with specific modeling parameters. 

Further, Chl and Anth could be estimated based on digital color 

features with high fidelity. Although similar estimations of Car 

content were not as accurate due to its masking by other pig-

ments, the potential for more precise indirect estimations using 

predicted Chl content values remains to be fully explored. 

Furthermore, as the currently tested models were developed us-

ing a broad range of Anth contents, their sensitivity differed with 

Anth levels, highlighting the potential for testing smaller ranges 

of Anth for improving model precision for low Anth contents. 

Hence, while providing novel insights into the development of 

holistic ML-based models that may be implemented for estimat-

ing pigment contents across multiple green and red leafy vegeta-

ble species, our study also opens the avenue for further research 

in this direction by highlighting the limitations and future per-

spectives. Streamlining and implementation of such models in 

commercial practice would be greatly beneficial in real-time pre- 

and post-harvest monitoring of the nutritional quality of 

leafy vegetables.
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