001     1041671
005     20250505202224.0
037 _ _ |a FZJ-2025-02376
041 _ _ |a English
100 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 0
|e Corresponding author
|u fzj
111 2 _ |a DPG Spring Meeting of the Condensed Matter Section
|c Regensburg
|d 2025-03-16 - 2025-03-21
|w Germany
245 _ _ |a Employing normalizing flows to examine neural manifold characteristics and curvatures
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1746441693_14470
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Despite the vast number of active neurons, neuronal population activity supposedly lies on low-dimensional manifolds (Gallego et al., 2017). To learn the statistics of neural activity, we use Normalizing Flows (NFs) (Dinh et al., 2014). These neural networks are trained to estimate the probability distribution by learning an invertible map to a latent distribution.We adjust NF’s training objectives to distinguish between relevant and noise dimensions, by using a nested dropout procedure in the latent space (Bekasov & Murray, 2020). An approximation of the network for each mixture component as a quadratic mapping enables us to calculate the Riemannian curvature tensors of the neural manifold. We focus mainly on the directions in the tangent space, in which the sectional curvature shows local extrema.Finally, we apply the method to electrophysiological recordings of the visual cortex in macaques (Chen et al., 2022). We show that manifolds deviate significantly from being flat. Analyzing the curvature of the manifolds yields insights into the regimes where neuron groups interact in a non-linear manner.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 1
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 2
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 3
700 1 _ |a Nestler, Sandra
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fischer, Kirsten
|0 P:(DE-Juel1)180150
|b 2
|u fzj
700 1 _ |a Merger, Claudia Lioba
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rene, Alexandre
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 5
|e Last author
|u fzj
856 4 _ |u https://www.dpg-verhandlungen.de/year/2025/conference/regensburg/part/soe/session/7/contribution/9
909 C O |o oai:juser.fz-juelich.de:1041671
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178725
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)178725
910 1 _ |a Technion, Haifa, Israel
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180150
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)180150
910 1 _ |a SISSA, Trieste, Italy
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a University of Ottawa, Canada
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144806
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21