001     1041677
005     20250505202225.0
037 _ _ |a FZJ-2025-02382
041 _ _ |a English
100 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Computational Neuroscience Academy
|g CNA 2023
|c Krakow
|d 2025-07-17 - 2025-07-23
|w Poland
245 _ _ |a Normalizing flows for nonlinear dimensionality reduction ofelectrophysiological recordings
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1746445560_28061
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Even though the cortex has many active neurons, neuronal populations for different brain areasshould dwell on a low-dimensional manifold [1]. Principal component analysis versions are used toestimate this manifold and its dimension. Although successful, these methods assume that the data iswell described by a Gaussian distribution and ignore features like skewness and bimodality. Therefore,they perform poorly as generative models.Normalizing Flows (NFs) allow us to learn neural activity statistics and generate artificial samples [2,3]. These neural networks learn a dimension-preserving estimator of the data’s probability distribution.They are simpler than generative adversarial networks (GANs) and variational autoencoders (VAEs)since they learn only one bijective mapping and can compute the likelihood correctly due to tractableJacobians at each building block.NFs are trained to distinguish relevant (in manifold) from noisy dimensions (out of manifold). To dothis, we break the original symmetry of the latent space by pushing maximal variance of the data to becaptured by as few dimensions as possible — the same idea underpinning PCA, a linear model, adoptedhere for nonlinear mappings. NFs’ unique characteristics allows us to estimate the neural manifold’sdimensions and describe the underlying manifold without discarding any information.Our adaptation is validated on simulated datasets of various complexity created using a hidden man-ifold model with specified dimensions. Reconstructing data with a few latent NF dimensions shows ourapproach’s capability. In this case, our nonlinear approaches outperform linear ones. We identify mani-folds in high-gamma EEG recordings using the aforementioned technique. In the experiment of [4], 128electrodes recorded during four movement tasks. These data show a heavy-tailed distribution along someof the first principal components. NFs can learn higher-order correlations while linear models like PCAare limited to Gaussian statistics. We can also better match features to latent dimensions by flatteningthe latent space. We now have fewer latent dimensions that explain most data variance.References[1] J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla, Neuron, 94(5), 978-984 (2017).[2] L. Dinh, D. Krueger, and Y. Bengio, In Conference on Learning Representations, ICLR (2015).[3] L. Dinh, J. Sohl-Dickstein, and S. Bengio, In Conference on Learning Representations, ICLR (2017).[4] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tanger-mann, ... and T. Ball, Human brain mapping, 38(11), 5391-5420 (2017).
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 1
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 2
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 3
700 1 _ |a Nestler, Sandra
|0 P:(DE-Juel1)204281
|b 1
700 1 _ |a Fischer, Kirsten
|0 P:(DE-Juel1)180150
|b 2
|u fzj
700 1 _ |a Merger, Claudia Lioba
|0 P:(DE-Juel1)184900
|b 3
700 1 _ |a Rene, Alexandre
|0 P:(DE-Juel1)178936
|b 4
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 5
|u fzj
856 4 _ |u https://cna2023.ift.uj.edu.pl/documents/152426817/153896610/CNA_2023_BOA_Posters.pdf/c2ab4ff9-fd6e-4290-81bd-1b2dcac9d189
909 C O |o oai:juser.fz-juelich.de:1041677
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178725
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)204281
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)204281
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180150
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)180150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184900
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)184900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178936
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)178936
910 1 _ |a University of Ottawa, Canada
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)178936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144806
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21