001     1041713
005     20250509202317.0
024 7 _ |a 10.34734/FZJ-2025-02398
|2 datacite_doi
037 _ _ |a FZJ-2025-02398
041 _ _ |a English
100 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 0
|e Corresponding author
111 2 _ |a The 12th John von Neumann Institute for Computing (NIC) Symposium
|c Jülich
|d 2025-03-06 - 2025-03-07
|w Germany
245 _ _ |a Applying AtmoRep for Diverse Weather Applications
260 _ _ |c 2025
295 1 0 |a NIC Symposium 2025 Proceedings
300 _ _ |a 301- 311
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1746791755_2942
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a Proceedings: https://doi.org/10.34734/FZJ-2025-01965 ISBN: 978-3-95806-793-6
520 _ _ |a Machine learning has recently seen a rapid wide-spread adoption across various fields of science including atmospheric and weather research. The emergence of foundation models has marked a transformation in the science of machine learning. These foundation models are general-purpose models trained on huge amounts of data using self-supervised methods, eliminating the need for labeled data. Once trained, the parameters of these models can be utilized as a starting point for a range of domain-specific tasks. This approach is advantageous in terms of both cost and performance, as it minimizes the reliance on annotated data compared to models trained from scratch. Motivated by this, our study explores the foundational capabilities of AtmoRep, a stochastic atmospheric foundation model, for two distinct weather-related applications, data compression and statistical downscaling. The training of the 3.5 billion parameter AtmoRep model consumed about a few weeks of compute time on 32 JUWELS Booster nodes.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
700 1 _ |a Semcheddine, Asma
|0 P:(DE-Juel1)203330
|b 1
700 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 2
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 3
700 1 _ |a Lessig, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Luise, Ilaria
|0 P:(DE-HGF)0
|b 5
770 _ _ |z 978-3-95806-793-6
773 _ _ |v 52
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/poster.png
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/pre-print%20of%20the%20paper.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/poster.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/poster.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/poster.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1041713/files/poster.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1041713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)203330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21