001041722 001__ 1041722
001041722 005__ 20250804115204.0
001041722 0247_ $$2doi$$a10.1016/j.jpowsour.2025.237103
001041722 0247_ $$2ISSN$$a0378-7753
001041722 0247_ $$2ISSN$$a1873-2755
001041722 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02402
001041722 0247_ $$2WOS$$aWOS:001478616300001
001041722 037__ $$aFZJ-2025-02402
001041722 041__ $$aEnglish
001041722 082__ $$a620
001041722 1001_ $$00009-0003-4402-2172$$aTaoussi, S.$$b0$$eCorresponding author
001041722 245__ $$aNext-generation Li1.3+xAl0.3AsxTi1.7-x(PO4)3 NASICON electrolytes with outstanding ionic conductivity performance
001041722 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2025
001041722 3367_ $$2DRIVER$$aarticle
001041722 3367_ $$2DataCite$$aOutput Types/Journal article
001041722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750774380_12430
001041722 3367_ $$2BibTeX$$aARTICLE
001041722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041722 3367_ $$00$$2EndNote$$aJournal Article
001041722 520__ $$aNASICON-type solid electrolytes feature prominently in the improved safety and energy density of solid-state lithium batteries (ASSLBs). Achieving high ionic conductivity in these electrolytes is key to optimizing their performance. In this study, we introduced a new class of NASICON-type materials by doping arsenic into the Li1.3Al0.3Ti1.7(PO4)3 framework, creating a series of Li1.3+xAl0.3AsxTi1.7-x(PO4)3 phases with varying arsenic content (x = 0, 0.1, 0.2, 0.3), synthesized using the standard solid-state reaction method. X-ray diffraction confirmed the successful formation of the Li1.3+xAl0.3AsxTi1.7-x(PO4)3 phases, which was further validated by Rietveld refinement. Structural analyses through FT-IR, Raman spectroscopy, NMR, and ICP-AES studies validate the effective incorporation of arsenic into the lattice. Among the different compositions, Li1.5As0.2Al0.3Ti1.5(PO4)3 phase stood out due to its high relative density of 89% and its pore-free microstructure, as observed through scanning electron microscopy results, revealing the largest grain and crystallite size. Notably, doping with arsenic resulted in a significant enhancement in ionic conductivity, increasing from 5.34×10-5 Ω-1.cm-1 for Li1.3Al0.3Ti1.7(PO4)3 to 8.57×10-4 Ω-1.cm-1 for the Li1.5As0.2Al0.3Ti1.5(PO4)3 at 25°C. With a lithium transference number of 0.99, and a conduction mechanism largely unaffected by changes in temperature or composition, demonstrating its suitability as a promising candidate for solid electrolyte applications.
001041722 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001041722 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001041722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041722 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001041722 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
001041722 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001041722 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001041722 7001_ $$0P:(DE-HGF)0$$aOuaha, A.$$b1
001041722 7001_ $$0P:(DE-HGF)0$$aNaji, M.$$b2
001041722 7001_ $$0P:(DE-HGF)0$$aHoummada, K.$$b3
001041722 7001_ $$0P:(DE-HGF)0$$aLahmar, A.$$b4
001041722 7001_ $$0P:(DE-HGF)0$$aAlami, J.$$b5
001041722 7001_ $$0P:(DE-HGF)0$$aManoun, B.$$b6
001041722 7001_ $$0P:(DE-HGF)0$$aEl bouari, A.$$b7
001041722 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, H.$$b8$$ufzj
001041722 7001_ $$0P:(DE-HGF)0$$aBih, L.$$b9
001041722 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2025.237103$$gVol. 644, p. 237103 -$$p237103$$tJournal of power sources$$v644$$x0378-7753$$y2025
001041722 8564_ $$uhttps://juser.fz-juelich.de/record/1041722/files/Next-Generation%20Li1.3%2BxAl0.3AsxTi1.7-x%28PO4%293%20%20NASICON%20Electrolytes%20with%20Outstanding%20Ionic%20Conductivity%20Performance.pdf$$yPublished on 2025-04-22. Available in OpenAccess from 2027-04-22.
001041722 909CO $$ooai:juser.fz-juelich.de:1041722$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001041722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b8$$kFZJ
001041722 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001041722 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001041722 9141_ $$y2025
001041722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001041722 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001041722 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001041722 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001041722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001041722 920__ $$lyes
001041722 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001041722 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001041722 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001041722 980__ $$ajournal
001041722 980__ $$aVDB
001041722 980__ $$aUNRESTRICTED
001041722 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001041722 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001041722 980__ $$aI:(DE-588b)4597118-3
001041722 9801_ $$aFullTexts