001     1041723
005     20250804115240.0
024 7 _ |a 10.1016/j.est.2025.116933
|2 doi
024 7 _ |a 2352-152X
|2 ISSN
024 7 _ |a 2352-1538
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02403
|2 datacite_doi
024 7 _ |a WOS:001487119500001
|2 WOS
037 _ _ |a FZJ-2025-02403
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Taoussi, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a NASICON As-doped and glass additive dual strategy for novel NASICON-glass composite with superior ionic conductivity
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750765246_5531
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to their desirable properties, NASICON-type LATP materials are considered strong candidates for use as solid-state electrolytes in lithium batteries. However, their ionic conductivity, essential for optimal battery performance, remains lower than liquid electrolytes. This study highlights the effectiveness of a dual-strategy approach to improve LATP NASICON materials' ionic conductivity. By substituting titanium with arsenic, we developed a high-ion-conducting phase, Li1.5Al0.3As0.2Ti1.5(PO4)3, which showed significant advancements, achieving a high relative density of 89% and an average grain size of 51 nm, which contributes to its improved performance. These modifications led to a significant boost in the ionic conductivity of the arsenic-doped LATP phase, which rose from 5.34 × 10-5 S.cm-1 for LATP to 8.57 × 10-4 S.cm-1 for the Li1.5Al0.3As0.2Ti1.5(PO4)3 phase at room temperature with an activation energy of 0.30 eV and a transference number close to 1. To address remaining porosity and grain boundary resistance, we developed a novel glass-ceramic composition by incorporating a high-ion-conducting glass additive (45Li2O-10Li2WO4-45P2O5) into the new elaborated Li1.5Al0.3As0.2Ti1.5(PO4)3 matrix. The addition of 3 wt.% glass content notably enhanced the density and compactness of the material, increasing its ionic conductivity to 4.6 × 10-3 S. cm-1 at 25 °C with an activation energy of 0.25 eV, representing the highest ionic conductivity reported for NASICON and NASICON-composite materials. This work provides a cost-effective and efficient method for producing novel NASICON ceramics and glass-ceramic composites with superior ionic conductivity, setting a new benchmark for NASICON-composite materials and advancing the development of high-performance solid-state electrolytes for lithium batteries.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Ouaha, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Naji, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hoummada, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lahmar, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Manoun, B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a El Bouari, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Frielinghaus, H.
|0 P:(DE-Juel1)130646
|b 7
|u fzj
700 1 _ |a Zhang, Y.
|0 P:(DE-Juel1)208503
|b 8
|u fzj
700 1 _ |a Bih, L.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.est.2025.116933
|g Vol. 124, p. 116933 -
|0 PERI:(DE-600)2826805-2
|p 116933
|t Journal of energy storage
|v 124
|y 2025
|x 2352-152X
856 4 _ |u https://juser.fz-juelich.de/record/1041723/files/Nasicon%20As-doped%20and%20glass%20additive%20dual%20strategy%20for%20novel%20NASICON-Glass%20composite%20with%20superior%20ionic%20conductivity.pdf
|y Published on 2025-05-03. Available in OpenAccess from 2027-05-03.
909 C O |o oai:juser.fz-juelich.de:1041723
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130646
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-Juel1)208503
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21