Home > Publications database > NASICON As-doped and glass additive dual strategy for novel NASICON-glass composite with superior ionic conductivity > print |
001 | 1041723 | ||
005 | 20250804115240.0 | ||
024 | 7 | _ | |a 10.1016/j.est.2025.116933 |2 doi |
024 | 7 | _ | |a 2352-152X |2 ISSN |
024 | 7 | _ | |a 2352-1538 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02403 |2 datacite_doi |
024 | 7 | _ | |a WOS:001487119500001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02403 |
041 | _ | _ | |a English |
082 | _ | _ | |a 333.7 |
100 | 1 | _ | |a Taoussi, S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a NASICON As-doped and glass additive dual strategy for novel NASICON-glass composite with superior ionic conductivity |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750765246_5531 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Due to their desirable properties, NASICON-type LATP materials are considered strong candidates for use as solid-state electrolytes in lithium batteries. However, their ionic conductivity, essential for optimal battery performance, remains lower than liquid electrolytes. This study highlights the effectiveness of a dual-strategy approach to improve LATP NASICON materials' ionic conductivity. By substituting titanium with arsenic, we developed a high-ion-conducting phase, Li1.5Al0.3As0.2Ti1.5(PO4)3, which showed significant advancements, achieving a high relative density of 89% and an average grain size of 51 nm, which contributes to its improved performance. These modifications led to a significant boost in the ionic conductivity of the arsenic-doped LATP phase, which rose from 5.34 × 10-5 S.cm-1 for LATP to 8.57 × 10-4 S.cm-1 for the Li1.5Al0.3As0.2Ti1.5(PO4)3 phase at room temperature with an activation energy of 0.30 eV and a transference number close to 1. To address remaining porosity and grain boundary resistance, we developed a novel glass-ceramic composition by incorporating a high-ion-conducting glass additive (45Li2O-10Li2WO4-45P2O5) into the new elaborated Li1.5Al0.3As0.2Ti1.5(PO4)3 matrix. The addition of 3 wt.% glass content notably enhanced the density and compactness of the material, increasing its ionic conductivity to 4.6 × 10-3 S. cm-1 at 25 °C with an activation energy of 0.25 eV, representing the highest ionic conductivity reported for NASICON and NASICON-composite materials. This work provides a cost-effective and efficient method for producing novel NASICON ceramics and glass-ceramic composites with superior ionic conductivity, setting a new benchmark for NASICON-composite materials and advancing the development of high-performance solid-state electrolytes for lithium batteries. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 1 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Ouaha, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Naji, M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hoummada, K. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lahmar, A. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Manoun, B. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a El Bouari, A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Frielinghaus, H. |0 P:(DE-Juel1)130646 |b 7 |u fzj |
700 | 1 | _ | |a Zhang, Y. |0 P:(DE-Juel1)208503 |b 8 |u fzj |
700 | 1 | _ | |a Bih, L. |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1016/j.est.2025.116933 |g Vol. 124, p. 116933 - |0 PERI:(DE-600)2826805-2 |p 116933 |t Journal of energy storage |v 124 |y 2025 |x 2352-152X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041723/files/Nasicon%20As-doped%20and%20glass%20additive%20dual%20strategy%20for%20novel%20NASICON-Glass%20composite%20with%20superior%20ionic%20conductivity.pdf |y Published on 2025-05-03. Available in OpenAccess from 2027-05-03. |
909 | C | O | |o oai:juser.fz-juelich.de:1041723 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130646 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-Juel1)208503 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-21 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 1 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|