001     1041724
005     20251217202223.0
024 7 _ |a 10.34734/FZJ-2025-02404
|2 datacite_doi
037 _ _ |a FZJ-2025-02404
041 _ _ |a English
100 1 _ |a Krieger, Lena
|0 P:(DE-Juel1)196726
|b 0
|e Corresponding author
|u fzj
111 2 _ |a The Thirteenth International Conference on Learning Representations
|g ICLR2025
|c Singapore
|d 2025-04-24 - 2025-04-28
|w Singapore
245 _ _ |a FairDen: Fair Density-Based Clustering
260 _ _ |c 2025
300 _ _ |a -
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1765959345_26386
|2 PUB:(DE-HGF)
520 _ _ |a Fairness in data mining tasks like clustering has recently become an increasingly important aspect. However, few clustering algorithms exist that focus on fair groupings of data with sensitive attributes. Including fairness in the clustering objective is especially hard for density-based clustering, as it does not directly optimize a closed form objective like centroid-based or spectral methods. This paper introduces FairDen, the first fair, density-based clustering algorithm.We capture the dataset's density-connectivity structure in a similarity matrix that we manipulate to encourage a balanced clustering. In contrast to state-of-the-art, FairDen inherently handles categorical attributes, noise, and data with several sensitive attributes or groups.We show that FairDen finds meaningful and fair clusters in extensive experiments.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Beer, Anna
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Matthews, Pernille
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thiesson, Anneka
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 4
|e Last author
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1041724/files/FairDen-FullPaper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041724
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196726
910 1 _ |a Universität Wien
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Aarhus University
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Aarhus University
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188313
910 1 _ |a Aarhus University
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)188313
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21